tf.raw_ops.TopK
Stay organized with collections
Save and categorize content based on your preferences.
Finds values and indices of the k
largest elements for the last dimension.
tf.raw_ops.TopK(
input, k, sorted=True, name=None
)
If the input is a vector (rank-1), finds the k
largest entries in the vector
and outputs their values and indices as vectors. Thus values[j]
is the
j
-th largest entry in input
, and its index is indices[j]
.
For matrices (resp. higher rank input), computes the top k
entries in each
row (resp. vector along the last dimension). Thus,
values.shape = indices.shape = input.shape[:-1] + [k]
If two elements are equal, the lower-index element appears first.
If k
varies dynamically, use TopKV2
below.
Args |
input
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , int64 , bfloat16 , uint16 , half , uint32 , uint64 .
1-D or higher with last dimension at least k .
|
k
|
An int that is >= 0 .
Number of top elements to look for along the last dimension (along each
row for matrices).
|
sorted
|
An optional bool . Defaults to True .
If true the resulting k elements will be sorted by the values in
descending order.
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (values, indices).
|
values
|
A Tensor . Has the same type as input .
|
indices
|
A Tensor of type int32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.TopK\n\n\u003cbr /\u003e\n\nFinds values and indices of the `k` largest elements for the last dimension.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.TopK`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/TopK)\n\n\u003cbr /\u003e\n\n tf.raw_ops.TopK(\n input, k, sorted=True, name=None\n )\n\nIf the input is a vector (rank-1), finds the `k` largest entries in the vector\nand outputs their values and indices as vectors. Thus `values[j]` is the\n`j`-th largest entry in `input`, and its index is `indices[j]`.\n\nFor matrices (resp. higher rank input), computes the top `k` entries in each\nrow (resp. vector along the last dimension). Thus, \n\n values.shape = indices.shape = input.shape[:-1] + [k]\n\nIf two elements are equal, the lower-index element appears first.\n\nIf `k` varies dynamically, use `TopKV2` below.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. 1-D or higher with last dimension at least `k`. |\n| `k` | An `int` that is `\u003e= 0`. Number of top elements to look for along the last dimension (along each row for matrices). |\n| `sorted` | An optional `bool`. Defaults to `True`. If true the resulting `k` elements will be sorted by the values in descending order. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------|-------------------------------------------|\n| A tuple of `Tensor` objects (values, indices). ||\n| `values` | A `Tensor`. Has the same type as `input`. |\n| `indices` | A `Tensor` of type `int32`. |\n\n\u003cbr /\u003e"]]