tf.keras.layers.concatenate
Stay organized with collections
Save and categorize content based on your preferences.
Functional interface to the Concatenate
layer.
tf.keras.layers.concatenate(
inputs, axis=-1, **kwargs
)
Used in the notebooks
Args |
inputs
|
A list of input tensors.
|
axis
|
Concatenation axis.
|
**kwargs
|
Standard layer keyword arguments.
|
Returns |
A tensor, the concatenation of the inputs alongside axis axis .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.layers.concatenate\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/layers/merging/concatenate.py#L160-L172) |\n\nFunctional interface to the `Concatenate` layer. \n\n tf.keras.layers.concatenate(\n inputs, axis=-1, **kwargs\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [pix2pix: Image-to-image translation with a conditional GAN](https://www.tensorflow.org/tutorials/generative/pix2pix) - [Classify structured data using Keras preprocessing layers](https://www.tensorflow.org/tutorials/structured_data/preprocessing_layers) - [Streaming structured data from Elasticsearch using Tensorflow-IO](https://www.tensorflow.org/io/tutorials/elasticsearch) - [Tensorflow datasets from MongoDB collections](https://www.tensorflow.org/io/tutorials/mongodb) - [Quantum Convolutional Neural Network](https://www.tensorflow.org/quantum/tutorials/qcnn) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|-----------------------------------|\n| `inputs` | A list of input tensors. |\n| `axis` | Concatenation axis. |\n| `**kwargs` | Standard layer keyword arguments. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor, the concatenation of the inputs alongside axis `axis`. ||\n\n\u003cbr /\u003e"]]