tf.keras.layers.Dot
Stay organized with collections
Save and categorize content based on your preferences.
Computes element-wise dot product of two tensors.
Inherits From: Layer
, Operation
tf.keras.layers.Dot(
axes, normalize=False, **kwargs
)
Used in the notebooks
It takes a list of inputs of size 2, and the axes
corresponding to each input along with the dot product
is to be performed.
Let's say x
and y
are the two input tensors with shapes
(2, 3, 5)
and (2, 10, 3)
. The batch dimension should be
of same size for both the inputs, and axes
should correspond
to the dimensions that have the same size in the corresponding
inputs. e.g. with axes=(1, 2)
, the dot product of x
, and y
will result in a tensor with shape (2, 5, 10)
Example:
x = np.arange(10).reshape(1, 5, 2)
y = np.arange(10, 20).reshape(1, 2, 5)
keras.layers.Dot(axes=(1, 2))([x, y])
Usage in a Keras model:
x1 = keras.layers.Dense(8)(np.arange(10).reshape(5, 2))
x2 = keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))
y = keras.layers.Dot(axes=1)([x1, x2])
Args |
axes
|
Integer or tuple of integers, axis or axes along which to
take the dot product. If a tuple, should be two integers
corresponding to the desired axis from the first input and the
desired axis from the second input, respectively. Note that the
size of the two selected axes must match.
|
normalize
|
Whether to L2-normalize samples along the dot product axis
before taking the dot product. If set to True , then
the output of the dot product is the cosine proximity
between the two samples.
|
**kwargs
|
Standard layer keyword arguments.
|
Returns |
A tensor, the dot product of the samples from the inputs.
|
Attributes |
input
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
output
|
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time
the operation was called.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args |
config
|
A Python dictionary, typically the
output of get_config.
|
Returns |
A layer instance.
|
symbolic_call
View source
symbolic_call(
*args, **kwargs
)
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.layers.Dot\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/layers/merging/dot.py#L197-L356) |\n\nComputes element-wise dot product of two tensors.\n\nInherits From: [`Layer`](../../../tf/keras/Layer), [`Operation`](../../../tf/keras/Operation) \n\n tf.keras.layers.Dot(\n axes, normalize=False, **kwargs\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|---------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Federated Reconstruction for Matrix Factorization](https://www.tensorflow.org/federated/tutorials/federated_reconstruction_for_matrix_factorization) |\n\nIt takes a list of inputs of size 2, and the axes\ncorresponding to each input along with the dot product\nis to be performed.\n\nLet's say `x` and `y` are the two input tensors with shapes\n`(2, 3, 5)` and `(2, 10, 3)`. The batch dimension should be\nof same size for both the inputs, and `axes` should correspond\nto the dimensions that have the same size in the corresponding\ninputs. e.g. with `axes=(1, 2)`, the dot product of `x`, and `y`\nwill result in a tensor with shape `(2, 5, 10)`\n\n#### Example:\n\n x = np.arange(10).reshape(1, 5, 2)\n y = np.arange(10, 20).reshape(1, 2, 5)\n keras.layers.Dot(axes=(1, 2))([x, y])\n\nUsage in a Keras model: \n\n x1 = keras.layers.Dense(8)(np.arange(10).reshape(5, 2))\n x2 = keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2))\n y = keras.layers.Dot(axes=1)([x1, x2])\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `axes` | Integer or tuple of integers, axis or axes along which to take the dot product. If a tuple, should be two integers corresponding to the desired axis from the first input and the desired axis from the second input, respectively. Note that the size of the two selected axes must match. |\n| `normalize` | Whether to L2-normalize samples along the dot product axis before taking the dot product. If set to `True`, then the output of the dot product is the cosine proximity between the two samples. |\n| `**kwargs` | Standard layer keyword arguments. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A tensor, the dot product of the samples from the inputs. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | Retrieves the input tensor(s) of a symbolic operation. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n| `output` | Retrieves the output tensor(s) of a layer. \u003cbr /\u003e Only returns the tensor(s) corresponding to the *first time* the operation was called. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L191-L213) \n\n @classmethod\n from_config(\n config\n )\n\nCreates a layer from its config.\n\nThis method is the reverse of `get_config`,\ncapable of instantiating the same layer from the config\ndictionary. It does not handle layer connectivity\n(handled by Network), nor weights (handled by `set_weights`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------------|\n| `config` | A Python dictionary, typically the output of get_config. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A layer instance. ||\n\n\u003cbr /\u003e\n\n### `symbolic_call`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/ops/operation.py#L58-L70) \n\n symbolic_call(\n *args, **kwargs\n )"]]