tf.compat.v1.zeros_like
Stay organized with collections
Save and categorize content based on your preferences.
Creates a tensor with all elements set to zero.
tf.compat.v1.zeros_like(
tensor, dtype=None, name=None, optimize=True
)
See also tf.zeros
.
Given a single tensor (tensor
), this operation returns a tensor of the
same type and shape as tensor
with all elements set to zero. Optionally,
you can use dtype
to specify a new type for the returned tensor.
Examples |
>>> tensor = tf.constant([[1, 2, 3], [4, 5, 6]])
>>> tf.zeros_like(tensor)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[0, 0, 0],
[0, 0, 0]], dtype=int32)>
tf.zeros_like(tensor, dtype=tf.float32)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)>
|
Args |
tensor
|
A Tensor .
|
dtype
|
A type for the returned Tensor . Must be float16 , float32 ,
float64 , int8 , uint8 , int16 , uint16 , int32 , int64 ,
complex64 , complex128 , bool or string . (optional)
|
name
|
A name for the operation (optional).
|
optimize
|
if True , attempt to statically determine the shape of tensor
and encode it as a constant. (optional, defaults to True )
|
Returns |
A Tensor with all elements set to zero.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tf.compat.v1.zeros_like\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/array_ops.py#L2627-L2664) |\n\nCreates a tensor with all elements set to zero. \n\n tf.compat.v1.zeros_like(\n tensor, dtype=None, name=None, optimize=True\n )\n\nSee also [`tf.zeros`](../../../tf/zeros).\n\nGiven a single tensor (`tensor`), this operation returns a tensor of the\nsame type and shape as `tensor` with all elements set to zero. Optionally,\nyou can use `dtype` to specify a new type for the returned tensor.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Examples -------- ||\n|---|---|\n| \u003cbr /\u003e \u003e\u003e\u003e tensor = tf.constant([[1, 2, 3], [4, 5, 6]]) \u003e\u003e\u003e tf.zeros_like(tensor) \u003ctf.Tensor: shape=(2, 3), dtype=int32, numpy= array([[0, 0, 0], [0, 0, 0]], dtype=int32)\u003e tf.zeros_like(tensor, dtype=tf.float32) \u003ctf.Tensor: shape=(2, 3), dtype=float32, numpy= array([[0., 0., 0.], [0., 0., 0.]], dtype=float32)\u003e \u003cbr /\u003e ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `tensor` | A `Tensor`. |\n| `dtype` | A type for the returned `Tensor`. Must be `float16`, `float32`, `float64`, `int8`, `uint8`, `int16`, `uint16`, `int32`, `int64`, `complex64`, `complex128`, `bool` or `string`. (optional) |\n| `name` | A name for the operation (optional). |\n| `optimize` | if `True`, attempt to statically determine the shape of `tensor` and encode it as a constant. (optional, defaults to `True`) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` with all elements set to zero. ||\n\n\u003cbr /\u003e"]]