tf.keras.initializers.Constant
Stay organized with collections
Save and categorize content based on your preferences.
Initializer that generates tensors with constant values.
Inherits From: Initializer
tf.keras.initializers.Constant(
value=0.0
)
Used in the notebooks
Only scalar values are allowed.
The constant value provided must be convertible to the dtype requested
when calling the initializer.
Examples:
# Standalone usage:
initializer = Constant(10.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = Constant(10.)
layer = Dense(3, kernel_initializer=initializer)
Args |
value
|
A Python scalar.
|
Methods
clone
View source
clone()
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config() .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.initializers.Constant\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/constant_initializers.py#L8-L45) |\n\nInitializer that generates tensors with constant values.\n\nInherits From: [`Initializer`](../../../tf/keras/Initializer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.initializers.constant`](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/Constant)\n\n\u003cbr /\u003e\n\n tf.keras.initializers.Constant(\n value=0.0\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Classification on imbalanced data](https://www.tensorflow.org/tutorials/structured_data/imbalanced_data) - [Train a Deep Q Network with TF-Agents](https://www.tensorflow.org/agents/tutorials/1_dqn_tutorial) |\n\nOnly scalar values are allowed.\nThe constant value provided must be convertible to the dtype requested\nwhen calling the initializer.\n\n#### Examples:\n\n # Standalone usage:\n initializer = Constant(10.)\n values = initializer(shape=(2, 2))\n\n # Usage in a Keras layer:\n initializer = Constant(10.)\n layer = Dense(3, kernel_initializer=initializer)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|------------------|\n| `value` | A Python scalar. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `clone`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/initializer.py#L83-L84) \n\n clone()\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/constant_initializers.py#L42-L45) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------|\n| `config` | A Python dictionary, the output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An `Initializer` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/constant_initializers.py#L39-L40) \n\n get_config()\n\nReturns the initializer's configuration as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/initializers/constant_initializers.py#L33-L37) \n\n __call__(\n shape, dtype=None\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|---------|-------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. |\n\n\u003cbr /\u003e"]]