Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 0 additions & 2 deletions Mathlib/Analysis/InnerProductSpace/Projection/Minimal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,6 @@ This point `v` is usually called the orthogonal projection of `u` onto `K`.
theorem exists_norm_eq_iInf_of_complete_subspace (h : IsComplete (↑K : Set E)) :
βˆ€ u : E, βˆƒ v ∈ K, β€–u - vβ€– = β¨… w : (K : Set E), β€–u - wβ€– := by
letI : InnerProductSpace ℝ E := InnerProductSpace.rclikeToReal π•œ E
letI : Module ℝ E := RestrictScalars.module ℝ π•œ E
let K' : Submodule ℝ E := Submodule.restrictScalars ℝ K
exact exists_norm_eq_iInf_of_complete_convex ⟨0, K'.zero_mem⟩ h K'.convex

Expand Down Expand Up @@ -288,7 +287,6 @@ for all `w ∈ K`, `βŸͺu - v, w⟫ = 0` (i.e., `u - v` is orthogonal to the subs
theorem norm_eq_iInf_iff_inner_eq_zero {u : E} {v : E} (hv : v ∈ K) :
(β€–u - vβ€– = β¨… w : K, β€–u - wβ€–) ↔ βˆ€ w ∈ K, βŸͺu - v, w⟫ = 0 := by
letI : InnerProductSpace ℝ E := InnerProductSpace.rclikeToReal π•œ E
letI : Module ℝ E := RestrictScalars.module ℝ π•œ E
let K' : Submodule ℝ E := K.restrictScalars ℝ
constructor
Β· intro H
Expand Down
1 change: 0 additions & 1 deletion Mathlib/CategoryTheory/Galois/EssSurj.lean
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,6 @@ lemma has_decomp_quotients (X : Action FintypeCat G)
have (i : ΞΉ) : βˆƒ (U : OpenSubgroup (G)), (Nonempty ((f i) β‰… G ⧸ₐ U.toSubgroup)) := by
obtain ⟨(x : (f i).V)⟩ := nonempty_fiber_of_isConnected (forgetβ‚‚ _ _) (f i)
let U : OpenSubgroup (G) := ⟨MulAction.stabilizer (G) x, stabilizer_isOpen (G) x⟩
letI : Fintype (G β§Έ MulAction.stabilizer (G) x) := fintypeQuotient U
exact ⟨U, ⟨FintypeCat.isoQuotientStabilizerOfIsConnected (f i) x⟩⟩
choose g ui using this
exact ⟨ι, hf, g, ⟨(Sigma.mapIso (fun i ↦ (ui i).some)).symm β‰ͺ≫ u⟩⟩
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/LinearAlgebra/CliffordAlgebra/SpinGroup.lean
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,6 @@ theorem conjAct_smul_ι_mem_range_ι {x : (CliffordAlgebra Q)ˣ} (hx : x ∈ lip
letI := x.invertible
letI : Invertible (ΞΉ Q a) := by rwa [ha]
letI : Invertible (Q a) := invertibleOfInvertibleΞΉ Q a
letI := invertibleNeg (ΞΉ Q a)
letI := Invertible.map involute (ΞΉ Q a)
simp_rw [← invOf_units x, inv_inv, ← ha, invOf_ΞΉ_mul_ΞΉ_mul_ΞΉ, LinearMap.mem_range_self]
| one => simp_rw [inv_one, Units.val_one, one_mul, mul_one, LinearMap.mem_range_self]
| mul y z _ _ hy hz =>
Expand Down
1 change: 0 additions & 1 deletion Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -352,7 +352,6 @@ namespace Module.Basis
theorem card_le_card_of_linearIndependent {ΞΉ : Type*} [Fintype ΞΉ] (b : Basis ΞΉ R M)
{ΞΉ' : Type*} [Fintype ΞΉ'] {v : ΞΉ' β†’ M} (hv : LinearIndependent R v) :
Fintype.card ΞΉ' ≀ Fintype.card ΞΉ := by
letI := nontrivial_of_invariantBasisNumber R
simpa [rank_eq_card_basis b, Cardinal.mk_fintype] using hv.cardinal_lift_le_rank

theorem card_le_card_of_submodule (N : Submodule R M) [Fintype ΞΉ] (b : Basis ΞΉ R M)
Expand Down
1 change: 0 additions & 1 deletion Mathlib/LinearAlgebra/Dual/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -680,7 +680,6 @@ open LinearMap in
theorem quotDualCoannihilatorToDual_nondegenerate (W : Submodule R (Dual R M)) :
W.quotDualCoannihilatorToDual.Nondegenerate := by
rw [Nondegenerate, separatingLeft_iff_ker_eq_bot, separatingRight_iff_flip_ker_eq_bot]
letI : AddCommGroup W := inferInstance
simp_rw [ker_eq_bot]
exact ⟨W.quotDualCoannihilatorToDual_injective, W.flip_quotDualCoannihilatorToDual_injective⟩

Expand Down
5 changes: 0 additions & 5 deletions Mathlib/LinearAlgebra/FiniteDimensional/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -64,13 +64,8 @@ theorem _root_.Submodule.eq_top_of_finrank_eq [FiniteDimensional K V] {S : Submo
simpa [bS] using bS.linearIndependent.linearIndepOn_id.image
(f := Submodule.subtype S) (by simp)
set b := Basis.extend this with b_eq
letI i1 : Fintype (this.extend _) :=
(LinearIndependent.set_finite_of_isNoetherian (by simpa [b] using b.linearIndependent)).fintype
letI i2 : Fintype (((↑) : S β†’ V) '' Basis.ofVectorSpaceIndex K S) :=
(LinearIndependent.set_finite_of_isNoetherian this).fintype
letI i3 : Fintype (Basis.ofVectorSpaceIndex K S) :=
(LinearIndependent.set_finite_of_isNoetherian
(by simpa [bS] using bS.linearIndependent)).fintype
have : (↑) '' Basis.ofVectorSpaceIndex K S = this.extend (Set.subset_univ _) :=
Set.eq_of_subset_of_card_le (this.subset_extend _)
(by
Expand Down
12 changes: 4 additions & 8 deletions Mathlib/LinearAlgebra/LinearDisjoint.lean
Original file line number Diff line number Diff line change
Expand Up @@ -340,10 +340,8 @@ theorem linearIndependent_left_of_flat (H : M.LinearDisjoint N) [Module.Flat R N
/-- If `{ m_i }` is an `R`-basis of `M`, which is also `N`-linearly independent,
then `M` and `N` are linearly disjoint. -/
theorem of_basis_left {ΞΉ : Type*} (m : Basis ΞΉ R M)
(H : LinearMap.ker (mulLeftMap N m) = βŠ₯) : M.LinearDisjoint N := by
-- need this instance otherwise `LinearMap.ker_eq_bot` does not work
letI : AddCommGroup (ΞΉ β†’β‚€ N) := Finsupp.instAddCommGroup
exact of_basis_left' M N m (LinearMap.ker_eq_bot.1 H)
(H : LinearMap.ker (mulLeftMap N m) = βŠ₯) : M.LinearDisjoint N :=
of_basis_left' M N m (LinearMap.ker_eq_bot.1 H)

variable {M N} in
/-- If `M` and `N` are linearly disjoint, if `M` is a flat `R`-module, then for any family of
Expand All @@ -361,10 +359,8 @@ theorem linearIndependent_right_of_flat (H : M.LinearDisjoint N) [Module.Flat R
/-- If `{ n_i }` is an `R`-basis of `N`, which is also `M`-linearly independent,
then `M` and `N` are linearly disjoint. -/
theorem of_basis_right {ΞΉ : Type*} (n : Basis ΞΉ R N)
(H : LinearMap.ker (mulRightMap M n) = βŠ₯) : M.LinearDisjoint N := by
-- need this instance otherwise `LinearMap.ker_eq_bot` does not work
letI : AddCommGroup (ΞΉ β†’β‚€ M) := Finsupp.instAddCommGroup
exact of_basis_right' M N n (LinearMap.ker_eq_bot.1 H)
(H : LinearMap.ker (mulRightMap M n) = βŠ₯) : M.LinearDisjoint N :=
of_basis_right' M N n (LinearMap.ker_eq_bot.1 H)

variable {M N} in
/-- If `M` and `N` are linearly disjoint, if `M` is flat, then for any family of
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -475,7 +475,6 @@ open scoped Classical in
lemma card_isUnramified [NumberField k] [IsGalois k K] :
#{w : InfinitePlace K | w.IsUnramified k} =
#{w : InfinitePlace k | w.IsUnramifiedIn K} * finrank k K := by
letI := Module.Finite.of_restrictScalars_finite β„š k K
rw [← IsGalois.card_aut_eq_finrank,
Finset.card_eq_sum_card_fiberwise (f := (comap Β· (algebraMap k K)))
(t := {w : InfinitePlace k | w.IsUnramifiedIn K}), ← smul_eq_mul, ← sum_const]
Expand All @@ -499,7 +498,6 @@ open scoped Classical in
lemma card_isUnramified_compl [NumberField k] [IsGalois k K] :
#({w : InfinitePlace K | w.IsUnramified k} : Finset _)ᢜ =
#({w : InfinitePlace k | w.IsUnramifiedIn K} : Finset _)ᢜ * (finrank k K / 2) := by
letI := Module.Finite.of_restrictScalars_finite β„š k K
rw [← IsGalois.card_aut_eq_finrank,
Finset.card_eq_sum_card_fiberwise (f := (comap Β· (algebraMap k K)))
(t := ({w : InfinitePlace k | w.IsUnramifiedIn K} : Finset _)ᢜ), ← smul_eq_mul, ← sum_const]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/RingTheory/DedekindDomain/IntegralClosure.lean
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,6 @@ then `L` has a basis over `A` consisting of integral elements. -/
theorem FiniteDimensional.exists_is_basis_integral :
βˆƒ (s : Finset L) (b : Basis s K L), βˆ€ x, IsIntegral A (b x) := by
letI := Classical.decEq L
letI : IsNoetherian K L := IsNoetherian.iff_fg.2 inferInstance
let s' := IsNoetherian.finsetBasisIndex K L
let bs' := IsNoetherian.finsetBasis K L
obtain ⟨y, hy, his'⟩ := exists_integral_multiples A K (Finset.univ.image bs')
Expand Down
Loading