torch.randperm#
- torch.randperm(n, *, generator=None, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) Tensor#
Returns a random permutation of integers from
0ton - 1.- Parameters
n (int) – the upper bound (exclusive)
- Keyword Arguments
generator (
torch.Generator, optional) – a pseudorandom number generator for samplingout (Tensor, optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default:torch.int64.layout (
torch.layout, optional) – the desired layout of returned Tensor. Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_device()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False.
Example:
>>> torch.randperm(4) tensor([2, 1, 0, 3])