torch.amin#
- torch.amin(input, dim, keepdim=False, *, out=None) Tensor#
Returns the minimum value of each slice of the
inputtensor in the given dimension(s)dim.Note
- The difference between
max/minandamax/aminis: amax/aminsupports reducing on multiple dimensions,amax/amindoes not return indices.
Both
amax/aminevenly distribute gradients between equal values when there are multiple input elements with the same minimum or maximum value.- For
max/min: If reduce over all dimensions(no dim specified), gradients evenly distribute between equally
max/minvalues.If reduce over one specified axis, only propagate to the indexed element.
If
keepdimisTrue, the output tensor is of the same size asinputexcept in the dimension(s)dimwhere it is of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the output tensor having 1 (orlen(dim)) fewer dimension(s).- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[ 0.6451, -0.4866, 0.2987, -1.3312], [-0.5744, 1.2980, 1.8397, -0.2713], [ 0.9128, 0.9214, -1.7268, -0.2995], [ 0.9023, 0.4853, 0.9075, -1.6165]]) >>> torch.amin(a, 1) tensor([-1.3312, -0.5744, -1.7268, -1.6165])
- The difference between