torch.blackman_window#
- torch.blackman_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor#
Blackman window function.
where is the full window size.
The input
window_lengthis a positive integer controlling the returned window size.periodicflag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions liketorch.stft(). Therefore, ifperiodicis true, the in above formula is in fact . Also, we always havetorch.blackman_window(L, periodic=True)equal totorch.blackman_window(L + 1, periodic=False)[:-1].Note
If
window_length, the returned window contains a single value 1.- Parameters
- Keyword Arguments
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default: ifNone, uses a global default (seetorch.set_default_dtype()). Only floating point types are supported.layout (
torch.layout, optional) – the desired layout of returned window tensor. Onlytorch.strided(dense layout) is supported.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_device()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.
- Returns
A 1-D tensor of size containing the window
- Return type