torch.nonzero#
- torch.nonzero(input, *, out=None, as_tuple=False) LongTensor or tuple of LongTensors#
Note
torch.nonzero(..., as_tuple=False)(default) returns a 2-D tensor where each row is the index for a nonzero value.torch.nonzero(..., as_tuple=True)returns a tuple of 1-D index tensors, allowing for advanced indexing, sox[x.nonzero(as_tuple=True)]gives all nonzero values of tensorx. Of the returned tuple, each index tensor contains nonzero indices for a certain dimension.See below for more details on the two behaviors.
When
inputis on CUDA,torch.nonzero()causes host-device synchronization.When
as_tupleisFalse(default):Returns a tensor containing the indices of all non-zero elements of
input. Each row in the result contains the indices of a non-zero element ininput. The result is sorted lexicographically, with the last index changing the fastest (C-style).If
inputhas dimensions, then the resulting indices tensoroutis of size , where is the total number of non-zero elements in theinputtensor.When
as_tupleisTrue:Returns a tuple of 1-D tensors, one for each dimension in
input, each containing the indices (in that dimension) of all non-zero elements ofinput.If
inputhas dimensions, then the resulting tuple contains tensors of size , where is the total number of non-zero elements in theinputtensor.As a special case, when
inputhas zero dimensions and a nonzero scalar value, it is treated as a one-dimensional tensor with one element.- Parameters
input (Tensor) – the input tensor.
- Keyword Arguments
out (LongTensor, optional) – the output tensor containing indices
- Returns
If
as_tupleisFalse, the output tensor containing indices. Ifas_tupleisTrue, one 1-D tensor for each dimension, containing the indices of each nonzero element along that dimension.- Return type
LongTensor or tuple of LongTensor
Example:
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) tensor([[ 0], [ 1], [ 2], [ 4]]) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]])) tensor([[ 0, 0], [ 1, 1], [ 2, 2], [ 3, 3]]) >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]), as_tuple=True) (tensor([0, 1, 2, 4]),) >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.0, 0.0, 1.2, 0.0], ... [0.0, 0.0, 0.0,-0.4]]), as_tuple=True) (tensor([0, 1, 2, 3]), tensor([0, 1, 2, 3])) >>> torch.nonzero(torch.tensor(5), as_tuple=True) (tensor([0]),)