torch.nn.utils.rnn.pad_packed_sequence#
- torch.nn.utils.rnn.pad_packed_sequence(sequence, batch_first=False, padding_value=0.0, total_length=None)[source]#
Pad a packed batch of variable length sequences.
It is an inverse operation to
pack_padded_sequence().The returned Tensor’s data will be of size
T x B x *(ifbatch_firstisFalse) orB x T x *(ifbatch_firstisTrue) , whereTis the length of the longest sequence andBis the batch size.Example
>>> from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence >>> seq = torch.tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]]) >>> lens = [2, 1, 3] >>> packed = pack_padded_sequence( ... seq, lens, batch_first=True, enforce_sorted=False ... ) >>> packed PackedSequence(data=tensor([4, 1, 3, 5, 2, 6]), batch_sizes=tensor([3, 2, 1]), sorted_indices=tensor([2, 0, 1]), unsorted_indices=tensor([1, 2, 0])) >>> seq_unpacked, lens_unpacked = pad_packed_sequence(packed, batch_first=True) >>> seq_unpacked tensor([[1, 2, 0], [3, 0, 0], [4, 5, 6]]) >>> lens_unpacked tensor([2, 1, 3])
Note
total_lengthis useful to implement thepack sequence -> recurrent network -> unpack sequencepattern in aModulewrapped inDataParallel. See this FAQ section for details.- Parameters
sequence (PackedSequence) – batch to pad
batch_first (bool, optional) – if
True, the output will be inB x T x *format,T x B x *otherwise.padding_value (float, optional) – values for padded elements.
total_length (int, optional) – if not
None, the output will be padded to have lengthtotal_length. This method will throwValueErroriftotal_lengthis less than the max sequence length insequence.
- Returns
Tuple of Tensor containing the padded sequence, and a Tensor containing the list of lengths of each sequence in the batch. Batch elements will be re-ordered as they were ordered originally when the batch was passed to
pack_padded_sequenceorpack_sequence.- Return type