torch.float_power#
- torch.float_power(input, exponent, *, out=None) Tensor#
Raises
inputto the power ofexponent, elementwise, in double precision. If neither input is complex returns atorch.float64tensor, and if one or more inputs is complex returns atorch.complex128tensor.Note
This function always computes in double precision, unlike
torch.pow(), which implements more typical type promotion. This is useful when the computation needs to be performed in a wider or more precise dtype, or the results of the computation may contain fractional values not representable in the input dtypes, like when an integer base is raised to a negative integer exponent.- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example:
>>> a = torch.randint(10, (4,)) >>> a tensor([6, 4, 7, 1]) >>> torch.float_power(a, 2) tensor([36., 16., 49., 1.], dtype=torch.float64) >>> a = torch.arange(1, 5) >>> a tensor([ 1, 2, 3, 4]) >>> exp = torch.tensor([2, -3, 4, -5]) >>> exp tensor([ 2, -3, 4, -5]) >>> torch.float_power(a, exp) tensor([1.0000e+00, 1.2500e-01, 8.1000e+01, 9.7656e-04], dtype=torch.float64)