pandas.read_excel#
- pandas.read_excel(io, sheet_name=0, *, header=0, names=None, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_format=None, thousands=None, decimal='.', comment=None, skipfooter=0, storage_options=None, dtype_backend=<no_default>, engine_kwargs=None)[source]#
Read an Excel file into a
DataFrame.Supports xls, xlsx, xlsm, xlsb, odf, ods and odt file extensions read from a local filesystem or URL. Supports an option to read a single sheet or a list of sheets.
- Parameters:
- iostr, ExcelFile, xlrd.Book, path object, or file-like object
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be:
file://localhost/path/to/table.xlsx.If you want to pass in a path object, pandas accepts any
os.PathLike.By file-like object, we refer to objects with a
read()method, such as a file handle (e.g. via builtinopenfunction) orStringIO.Deprecated since version 2.1.0: Passing byte strings is deprecated. To read from a byte string, wrap it in a
BytesIOobject.- sheet_namestr, int, list, or None, default 0
Strings are used for sheet names. Integers are used in zero-indexed sheet positions (chart sheets do not count as a sheet position). Lists of strings/integers are used to request multiple sheets. When
None, will return a dictionary containing DataFrames for each sheet.Available cases:
Defaults to
0: 1st sheet as a DataFrame1: 2nd sheet as a DataFrame"Sheet1": Load sheet with name “Sheet1”[0, 1, "Sheet5"]: Load first, second and sheet named “Sheet5” as a dict of DataFrameNone: Returns a dictionary containing DataFrames for each sheet..
- headerint, list of int, default 0
Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a
MultiIndex. Use None if there is no header.- namesarray-like, default None
List of column names to use. If file contains no header row, then you should explicitly pass header=None.
- index_colint, str, list of int, default None
Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a
MultiIndex. If a subset of data is selected withusecols, index_col is based on the subset.Missing values will be forward filled to allow roundtripping with
to_excelformerged_cells=True. To avoid forward filling the missing values useset_indexafter reading the data instead ofindex_col.- usecolsstr, list-like, or callable, default None
If None, then parse all columns.
If str, then indicates comma separated list of Excel column letters and column ranges (e.g. “A:E” or “A,C,E:F”). Ranges are inclusive of both sides.
If list of int, then indicates list of column numbers to be parsed (0-indexed).
If list of string, then indicates list of column names to be parsed.
If callable, then evaluate each column name against it and parse the column if the callable returns
True.
Returns a subset of the columns according to behavior above.
- dtypeType name or dict of column -> type, default None
Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use
objectto preserve data as stored in Excel and not interpret dtype, which will necessarily result inobjectdtype. If converters are specified, they will be applied INSTEAD of dtype conversion. If you useNone, it will infer the dtype of each column based on the data.- engine{‘openpyxl’, ‘calamine’, ‘odf’, ‘pyxlsb’, ‘xlrd’}, default None
If io is not a buffer or path, this must be set to identify io. Engine compatibility :
openpyxlsupports newer Excel file formats.calaminesupports Excel (.xls, .xlsx, .xlsm, .xlsb) and OpenDocument (.ods) file formats.odfsupports OpenDocument file formats (.odf, .ods, .odt).pyxlsbsupports Binary Excel files.xlrdsupports old-style Excel files (.xls).
When
engine=None, the following logic will be used to determine the engine:If
path_or_bufferis an OpenDocument format (.odf, .ods, .odt), then odf will be used.Otherwise if
path_or_bufferis an xls format,xlrdwill be used.Otherwise if
path_or_bufferis in xlsb format,pyxlsbwill be used.Otherwise
openpyxlwill be used.
- convertersdict, default None
Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.
- true_valueslist, default None
Values to consider as True.
- false_valueslist, default None
Values to consider as False.
- skiprowslist-like, int, or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be
lambda x: x in [0, 2].- nrowsint, default None
Number of rows to parse. Does not include header rows.
- na_valuesscalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘<NA>’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘None’, ‘n/a’, ‘nan’, ‘null’.
- keep_default_nabool, default True
Whether or not to include the default NaN values when parsing the data. Depending on whether
na_valuesis passed in, the behavior is as follows:If
keep_default_nais True, andna_valuesare specified,na_valuesis appended to the default NaN values used for parsing.If
keep_default_nais True, andna_valuesare not specified, only the default NaN values are used for parsing.If
keep_default_nais False, andna_valuesare specified, only the NaN values specifiedna_valuesare used for parsing.If
keep_default_nais False, andna_valuesare not specified, no strings will be parsed as NaN.
Note that if na_filter is passed in as False, the
keep_default_naandna_valuesparameters will be ignored.- na_filterbool, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing
na_filter=Falsecan improve the performance of reading a large file.- verbosebool, default False
Indicate number of NA values placed in non-numeric columns.
- parse_datesbool, list-like, or dict, default False
The behavior is as follows:
bool. If True -> try parsing the index.listof int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.listof lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
If a column or index contains an unparsable date, the entire column or index will be returned unaltered as an object data type. If you don`t want to parse some cells as date just change their type in Excel to “Text”. For non-standard datetime parsing, use
pd.to_datetimeafterpd.read_excel.Note: A fast-path exists for iso8601-formatted dates.
- date_formatstr or dict of column -> format, default
None If used in conjunction with
parse_dates, will parse dates according to this format. For anything more complex, please read in asobjectand then applyto_datetime()as-needed.Added in version 2.0.0.
- thousandsstr, default None
Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.
- decimalstr, default ‘.’
Character to recognize as decimal point for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.(e.g. use ‘,’ for European data).
Added in version 1.4.0.
- commentstr, default None
Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored.
- skipfooterint, default 0
Rows at the end to skip (0-indexed).
- storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Requestas header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open. Please seefsspecandurllibfor more details, and for more examples on storage options refer here.- dtype_backend{‘numpy_nullable’, ‘pyarrow’}
Back-end data type applied to the resultant
DataFrame(still experimental). If not specified, the default behavior is to not use nullable data types. If specified, the behavior is as follows:"numpy_nullable": returns nullable-dtype-backedDataFrame"pyarrow": returns pyarrow-backed nullableArrowDtypeDataFrame
Added in version 2.0.
- engine_kwargsdict, optional
Arbitrary keyword arguments passed to excel engine.
- Returns:
- DataFrame or dict of DataFrames
DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned.
See also
DataFrame.to_excelWrite DataFrame to an Excel file.
DataFrame.to_csvWrite DataFrame to a comma-separated values (csv) file.
read_csvRead a comma-separated values (csv) file into DataFrame.
read_fwfRead a table of fixed-width formatted lines into DataFrame.
Notes
For specific information on the methods used for each Excel engine, refer to the pandas user guide
Examples
The file can be read using the file name as string or an open file object:
>>> pd.read_excel('tmp.xlsx', index_col=0) Name Value 0 string1 1 1 string2 2 2 #Comment 3
>>> pd.read_excel(open('tmp.xlsx', 'rb'), ... sheet_name='Sheet3') Unnamed: 0 Name Value 0 0 string1 1 1 1 string2 2 2 2 #Comment 3
Index and header can be specified via the index_col and header arguments
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 #Comment 3
Column types are inferred but can be explicitly specified
>>> pd.read_excel('tmp.xlsx', index_col=0, ... dtype={'Name': str, 'Value': float}) Name Value 0 string1 1.0 1 string2 2.0 2 #Comment 3.0
True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings!
>>> pd.read_excel('tmp.xlsx', index_col=0, ... na_values=['string1', 'string2']) Name Value 0 NaN 1 1 NaN 2 2 #Comment 3
Comment lines in the excel input file can be skipped using the
commentkwarg.>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') Name Value 0 string1 1.0 1 string2 2.0 2 None NaN