pandas.read_csv#
- pandas.read_csv(filepath_or_buffer, *, sep=<no_default>, delimiter=None, header='infer', names=<no_default>, index_col=None, usecols=None, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, skip_blank_lines=True, parse_dates=None, date_format=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, encoding_errors='strict', dialect=None, on_bad_lines='error', low_memory=True, memory_map=False, float_precision=None, storage_options=None, dtype_backend=<no_default>)[source]#
Read a comma-separated values (csv) file into DataFrame.
Also supports optionally iterating or breaking of the file into chunks.
Additional help can be found in the online docs for IO Tools.
- Parameters:
- filepath_or_bufferstr, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any
os.PathLike.By file-like object, we refer to objects with a
read()method, such as a file handle (e.g. via builtinopenfunction) orStringIO.- sepstr, default ‘,’
Character or regex pattern to treat as the delimiter. If
sep=None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator from only the first valid row of the file by Python’s builtin sniffer tool,csv.Sniffer. In addition, separators longer than 1 character and different from'\s+'will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example:'\r\t'.- delimiterstr, optional
Alias for
sep.- headerint, Sequence of int, ‘infer’ or None, default ‘infer’
Row number(s) containing column labels and marking the start of the data (zero-indexed). Default behavior is to infer the column names: if no
namesare passed the behavior is identical toheader=0and column names are inferred from the first line of the file, if column names are passed explicitly tonamesthen the behavior is identical toheader=None. Explicitly passheader=0to be able to replace existing names. The header can be a list of integers that specify row locations for aMultiIndexon the columns e.g.[0, 1, 3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines ifskip_blank_lines=True, soheader=0denotes the first line of data rather than the first line of the file.When inferred from the file contents, headers are kept distinct from each other by renaming duplicate names with a numeric suffix of the form
".{{count}}"starting from 1, e.g."foo"and"foo.1". Empty headers are named"Unnamed: {{i}}"or `` “Unnamed: {{i}}_level_{{level}}”`` in the case of MultiIndex columns.- namesSequence of Hashable, optional
Sequence of column labels to apply. If the file contains a header row, then you should explicitly pass
header=0to override the column names. Duplicates in this list are not allowed.- index_colHashable, Sequence of Hashable or False, optional
Column(s) to use as row label(s), denoted either by column labels or column indices. If a sequence of labels or indices is given,
MultiIndexwill be formed for the row labels.Note:
index_col=Falsecan be used to force pandas to not use the first column as the index, e.g., when you have a malformed file with delimiters at the end of each line.- usecolsSequence of Hashable or Callable, optional
Subset of columns to select, denoted either by column labels or column indices. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in
namesor inferred from the document header row(s). Ifnamesare given, the document header row(s) are not taken into account. For example, a valid list-likeusecolsparameter would be[0, 1, 2]or['foo', 'bar', 'baz']. Element order is ignored, sousecols=[0, 1]is the same as[1, 0]. To instantiate aDataFramefromdatawith element order preserved usepd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]for columns in['foo', 'bar']order orpd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]for['bar', 'foo']order.If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to
True. An example of a valid callable argument would belambda x: x.upper() in ['AAA', 'BBB', 'DDD']. Using this parameter results in much faster parsing time and lower memory usage.- dtypedtype or dict of {{Hashabledtype}}, optional
Data type(s) to apply to either the whole dataset or individual columns. E.g.,
{{'a': np.float64, 'b': np.int32, 'c': 'Int64'}}Usestrorobjecttogether with suitablena_valuessettings to preserve and not interpretdtype. Ifconvertersare specified, they will be applied INSTEAD ofdtypeconversion.Added in version 1.5.0: Support for
defaultdictwas added. Specify adefaultdictas input where the default determines thedtypeof the columns which are not explicitly listed.- engine{{‘c’, ‘python’, ‘pyarrow’}}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine is currently more feature-complete. Multithreading is currently only supported by the pyarrow engine.
Added in version 1.4.0: The ‘pyarrow’ engine was added as an experimental engine, and some features are unsupported, or may not work correctly, with this engine.
- convertersdict of {{HashableCallable}}, optional
Functions for converting values in specified columns. Keys can either be column labels or column indices.
- true_valueslist, optional
Values to consider as
Truein addition to case-insensitive variants of ‘True’.- false_valueslist, optional
Values to consider as
Falsein addition to case-insensitive variants of ‘False’.- skipinitialspacebool, default False
Skip spaces after delimiter.
- skiprowsint, list of int or Callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (
int) at the start of the file.If callable, the callable function will be evaluated against the row indices, returning
Trueif the row should be skipped andFalseotherwise. An example of a valid callable argument would belambda x: x in [0, 2].- skipfooterint, default 0
Number of lines at bottom of file to skip (Unsupported with
engine='c').- nrowsint, optional
Number of rows of file to read. Useful for reading pieces of large files. Refers to the number of data rows in the returned DataFrame, excluding:
The header row containing column names.
Rows before the header row, if
header=1or larger.
Example usage:
To read the first 999,999 (non-header) rows:
read_csv(..., nrows=999999)To read rows 1,000,000 through 1,999,999:
read_csv(..., skiprows=1000000, nrows=999999)
- na_valuesHashable, Iterable of Hashable or dict of {{HashableIterable}},
optional Additional strings to recognize as
NA/NaN. Ifdictpassed, specific per-columnNAvalues. By default the following values are interpreted asNaN: empty string, “NaN”, “N/A”, “NULL”, and other common representations of missing data.- keep_default_nabool, default True
Whether or not to include the default
NaNvalues when parsing the data. Depending on whetherna_valuesis passed in, the behavior is as follows:If
keep_default_naisTrue, andna_valuesare specified,na_valuesis appended to the defaultNaNvalues used for parsing.If
keep_default_naisTrue, andna_valuesare not specified, only the defaultNaNvalues are used for parsing.If
keep_default_naisFalse, andna_valuesare specified, only theNaNvalues specifiedna_valuesare used for parsing.If
keep_default_naisFalse, andna_valuesare not specified, no strings will be parsed asNaN.
Note that if
na_filteris passed in asFalse, thekeep_default_naandna_valuesparameters will be ignored.- na_filterbool, default True
Detect missing value markers (empty strings and the value of
na_values). In data without anyNAvalues, passingna_filter=Falsecan improve the performance of reading a large file.- skip_blank_linesbool, default True
If
True, skip over blank lines rather than interpreting asNaNvalues.- parse_datesbool, None, list of Hashable, default None
The behavior is as follows:
bool. IfTrue-> try parsing the index.None. Behaves likeTrueifdate_formatis specified.listofintor names. e.g. If[1, 2, 3]-> try parsing columns 1, 2, 3 each as a separate date column.
If a column or index cannot be represented as an array of
datetime, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as anobjectdata type. For non-standarddatetimeparsing, useto_datetime()afterread_csv().Note: A fast-path exists for iso8601-formatted dates.
- date_formatstr or dict of column -> format, optional
Format to use for parsing dates and/or times when used in conjunction with
parse_dates. The strftime to parse time, e.g."%d/%m/%Y". See strftime documentation for more information on choices, though note that"%f"`will parse all the way up to nanoseconds. You can also pass:“ISO8601”, to parse any ISO8601 time string (not necessarily in exactly the same format);
“mixed”, to infer the format for each element individually. This is risky, and you should probably use it along with dayfirst.
Added in version 2.0.0.
- dayfirstbool, default False
DD/MM format dates, international and European format.
- cache_datesbool, default True
If
True, use a cache of unique, converted dates to apply thedatetimeconversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets.- iteratorbool, default False
Return
TextFileReaderobject for iteration or getting chunks withget_chunk().- chunksizeint, optional
Number of lines to read from the file per chunk. Passing a value will cause the function to return a
TextFileReaderobject for iteration. See the IO Tools docs for more information oniteratorandchunksize.- compressionstr or dict, default ‘infer’
For on-the-fly decompression of on-disk data. If ‘infer’ and ‘filepath_or_buffer’ is path-like, then detect compression from the following extensions: ‘.gz’, ‘.bz2’, ‘.zip’, ‘.xz’, ‘.zst’, ‘.tar’, ‘.tar.gz’, ‘.tar.xz’ or ‘.tar.bz2’ (otherwise no compression). If using ‘zip’ or ‘tar’, the ZIP file must contain only one data file to be read in. Set to
Nonefor no decompression. Can also be a dict with key'method'set to one of {'zip','gzip','bz2','zstd','xz','tar'} and other key-value pairs are forwarded tozipfile.ZipFile,gzip.GzipFile,bz2.BZ2File,zstandard.ZstdDecompressor,lzma.LZMAFileortarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary:compression={'method': 'zstd', 'dict_data': my_compression_dict}.Added in version 1.5.0: Added support for .tar files.
- thousandsstr (length 1), optional
Character acting as the thousands separator in numerical values.
- decimalstr (length 1), default ‘.’
Character to recognize as decimal point (e.g., use ‘,’ for European data).
- lineterminatorstr (length 1), optional
Character used to denote a line break. Only valid with C parser.
- quotecharstr (length 1), optional
Character used to denote the start and end of a quoted item. Quoted items can include the
delimiterand it will be ignored.- quoting{{0 or csv.QUOTE_MINIMAL, 1 or csv.QUOTE_ALL,
2 or csv.QUOTE_NONNUMERIC, 3 or csv.QUOTE_NONE}}, default csv.QUOTE_MINIMAL Control field quoting behavior per
csv.QUOTE_*constants. Default iscsv.QUOTE_MINIMAL(i.e., 0) which implies that only fields containing special characters are quoted (e.g., characters defined inquotechar,delimiter, orlineterminator.- doublequotebool, default True
When
quotecharis specified andquotingis notQUOTE_NONE, indicate whether or not to interpret two consecutivequotecharelements INSIDE a field as a singlequotecharelement.- escapecharstr (length 1), optional
Character used to escape other characters.
- commentstr (length 1), optional
Character indicating that the remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as
skip_blank_lines=True), fully commented lines are ignored by the parameterheaderbut not byskiprows. For example, ifcomment='#', parsing#empty\na,b,c\n1,2,3withheader=0will result in'a,b,c'being treated as the header.- encodingstr, optional, default ‘utf-8’
Encoding to use for UTF when reading/writing (ex.
'utf-8'). List of Python standard encodings .- encoding_errorsstr, optional, default ‘strict’
How encoding errors are treated. List of possible values .
Added in version 1.3.0.
- dialectstr or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the following parameters:
delimiter,doublequote,escapechar,skipinitialspace,quotechar, andquoting. If it is necessary to override values, aParserWarningwill be issued. Seecsv.Dialectdocumentation for more details.- on_bad_lines{{‘error’, ‘warn’, ‘skip’}} or Callable, default ‘error’
Specifies what to do upon encountering a bad line (a line with too many fields). Allowed values are:
'error', raise an Exception when a bad line is encountered.'warn', raise a warning when a bad line is encountered and skip that line.'skip', skip bad lines without raising or warning when they are encountered.- Callable, function that will process a single bad line.
With
engine='python', function with signature(bad_line: list[str]) -> list[str] | None.bad_lineis a list of strings split by thesep. If the function returnsNone, the bad line will be ignored. If the function returns a newlistof strings with more elements than expected, aParserWarningwill be emitted while dropping extra elements.With
engine='pyarrow', function with signature as described in pyarrow documentation: invalid_row_handler.
Changed in version 2.2.0: Callable for
engine='pyarrow'- low_memorybool, default True
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set
False, or specify the type with thedtypeparameter. Note that the entire file is read into a singleDataFrameregardless, use thechunksizeoriteratorparameter to return the data in chunks. (Only valid with C parser).- memory_mapbool, default False
If a filepath is provided for
filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.- float_precision{{‘high’, ‘legacy’, ‘round_trip’}}, optional
Specifies which converter the C engine should use for floating-point values. The options are
Noneor'high'for the ordinary converter,'legacy'for the original lower precision pandas converter, and'round_trip'for the round-trip converter.- storage_optionsdict, optional
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Requestas header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open. Please seefsspecandurllibfor more details, and for more examples on storage options refer here.- dtype_backend{{‘numpy_nullable’, ‘pyarrow’}}
Back-end data type applied to the resultant
DataFrame(still experimental). If not specified, the default behavior is to not use nullable data types. If specified, the behavior is as follows:"numpy_nullable": returns nullable-dtype-backedDataFrame"pyarrow": returns pyarrow-backed nullableArrowDtypeDataFrame
Added in version 2.0.
- Returns:
- DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes.
See also
DataFrame.to_csvWrite DataFrame to a comma-separated values (csv) file.
read_tableRead general delimited file into DataFrame.
read_fwfRead a table of fixed-width formatted lines into DataFrame.
Examples
>>> pd.read_csv("data.csv") Name Value 0 foo 1 1 bar 2 2 #baz 3
Index and header can be specified via the index_col and header arguments.
>>> pd.read_csv("data.csv", header=None) 0 1 0 Name Value 1 foo 1 2 bar 2 3 #baz 3
>>> pd.read_csv("data.csv", index_col="Value") Name Value 1 foo 2 bar 3 #baz
Column types are inferred but can be explicitly specified using the dtype argument.
>>> pd.read_csv("data.csv", dtype={{"Value": float}}) Name Value 0 foo 1.0 1 bar 2.0 2 #baz 3.0
True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings!
>>> pd.read_csv("data.csv", na_values=["foo", "bar"]) Name Value 0 NaN 1 1 NaN 2 2 #baz 3
Comment lines in the input file can be skipped using the comment argument.
>>> pd.read_csv("data.csv", comment="#") Name Value 0 foo 1 1 bar 2
By default, columns with dates will be read as
objectrather thandatetime.>>> df = pd.read_csv("tmp.csv")
>>> df col 1 col 2 col 3 0 10 10/04/2018 Sun 15 Jan 2023 1 20 15/04/2018 Fri 12 May 2023
>>> df.dtypes col 1 int64 col 2 object col 3 object dtype: object
Specific columns can be parsed as dates by using the parse_dates and date_format arguments.
>>> df = pd.read_csv( ... "tmp.csv", ... parse_dates=[1, 2], ... date_format={{"col 2": "%d/%m/%Y", "col 3": "%a %d %b %Y"}}, ... )
>>> df.dtypes col 1 int64 col 2 datetime64[ns] col 3 datetime64[ns] dtype: object