pandas.Index#
- class pandas.Index(data=None, dtype=None, copy=False, name=None, tupleize_cols=True)[source]#
- Immutable sequence used for indexing and alignment. - The basic object storing axis labels for all pandas objects. - Changed in version 2.0.0: Index can hold all numpy numeric dtypes (except float16). Previously only int64/uint64/float64 dtypes were accepted. - Parameters:
- dataarray-like (1-dimensional)
- dtypestr, numpy.dtype, or ExtensionDtype, optional
- Data type for the output Index. If not specified, this will be inferred from data. See the user guide for more usages. 
- copybool, default False
- Copy input data. 
- nameobject
- Name to be stored in the index. 
- tupleize_colsbool (default: True)
- When True, attempt to create a MultiIndex if possible. 
 
 - See also - RangeIndex
- Index implementing a monotonic integer range. 
- CategoricalIndex
- Index of - Categoricals.
- MultiIndex
- A multi-level, or hierarchical Index. 
- IntervalIndex
- An Index of - Intervals.
- DatetimeIndex
- Index of datetime64 data. 
- TimedeltaIndex
- Index of timedelta64 data. 
- PeriodIndex
- Index of Period data. 
 - Notes - An Index instance can only contain hashable objects. An Index instance can not hold numpy float16 dtype. - Examples - >>> pd.Index([1, 2, 3]) Index([1, 2, 3], dtype='int64') - >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') - >>> pd.Index([1, 2, 3], dtype="uint8") Index([1, 2, 3], dtype='uint8') - Attributes - Return the transpose, which is by definition self. - array- The ExtensionArray of the data backing this Series or Index. - Return the dtype object of the underlying data. - Check if the Index has duplicate values. - Return True if there are any NaNs. - Return a string of the type inferred from the values. - Return a boolean if the values are equal or decreasing. - Return a boolean if the values are equal or increasing. - Return if the index has unique values. - Return Index or MultiIndex name. - Return the number of bytes in the underlying data. - Number of dimensions of the underlying data, by definition 1. - nlevels- Number of levels. - Return a tuple of the shape of the underlying data. - Return the number of elements in the underlying data. - Return an array representing the data in the Index. - Methods - all(*args, **kwargs)- Return whether all elements are Truthy. - any(*args, **kwargs)- Return whether any element is Truthy. - append(other)- Append a collection of Index options together. - argmax([axis, skipna])- Return int position of the largest value in the Series. - argmin([axis, skipna])- Return int position of the smallest value in the Series. - argsort(*args, **kwargs)- Return the integer indices that would sort the index. - asof(label)- Return the label from the index, or, if not present, the previous one. - asof_locs(where, mask)- Return the locations (indices) of labels in the index. - astype(dtype[, copy])- Create an Index with values cast to dtypes. - copy([name, deep])- Make a copy of this object. - delete(loc)- Make new Index with passed location(-s) deleted. - diff([periods])- Computes the difference between consecutive values in the Index object. - difference(other[, sort])- Return a new Index with elements of index not in other. - drop(labels[, errors])- Make new Index with passed list of labels deleted. - drop_duplicates(*[, keep])- Return Index with duplicate values removed. - droplevel([level])- Return index with requested level(s) removed. - dropna([how])- Return Index without NA/NaN values. - duplicated([keep])- Indicate duplicate index values. - equals(other)- Determine if two Index object are equal. - factorize([sort, use_na_sentinel])- Encode the object as an enumerated type or categorical variable. - fillna([value, downcast])- Fill NA/NaN values with the specified value. - format([name, formatter, na_rep])- Render a string representation of the Index. - get_indexer(target[, method, limit, tolerance])- Compute indexer and mask for new index given the current index. - get_indexer_for(target)- Guaranteed return of an indexer even when non-unique. - get_indexer_non_unique(target)- Compute indexer and mask for new index given the current index. - get_level_values(level)- Return an Index of values for requested level. - get_loc(key)- Get integer location, slice or boolean mask for requested label. - get_slice_bound(label, side)- Calculate slice bound that corresponds to given label. - groupby(values)- Group the index labels by a given array of values. - holds_integer()- (DEPRECATED) Whether the type is an integer type. - identical(other)- Similar to equals, but checks that object attributes and types are also equal. - infer_objects([copy])- If we have an object dtype, try to infer a non-object dtype. - insert(loc, item)- Make new Index inserting new item at location. - intersection(other[, sort])- Form the intersection of two Index objects. - is_(other)- More flexible, faster check like - isbut that works through views.- (DEPRECATED) Check if the Index only consists of booleans. - (DEPRECATED) Check if the Index holds categorical data. - (DEPRECATED) Check if the Index is a floating type. - (DEPRECATED) Check if the Index only consists of integers. - (DEPRECATED) Check if the Index holds Interval objects. - (DEPRECATED) Check if the Index only consists of numeric data. - (DEPRECATED) Check if the Index is of the object dtype. - isin(values[, level])- Return a boolean array where the index values are in values. - isna()- Detect missing values. - isnull()- Detect missing values. - item()- Return the first element of the underlying data as a Python scalar. - join(other, *[, how, level, ...])- Compute join_index and indexers to conform data structures to the new index. - map(mapper[, na_action])- Map values using an input mapping or function. - max([axis, skipna])- Return the maximum value of the Index. - memory_usage([deep])- Memory usage of the values. - min([axis, skipna])- Return the minimum value of the Index. - notna()- Detect existing (non-missing) values. - notnull()- Detect existing (non-missing) values. - nunique([dropna])- Return number of unique elements in the object. - putmask(mask, value)- Return a new Index of the values set with the mask. - ravel([order])- Return a view on self. - reindex(target[, method, level, limit, ...])- Create index with target's values. - rename(name, *[, inplace])- Alter Index or MultiIndex name. - repeat(repeats[, axis])- Repeat elements of a Index. - round([decimals])- Round each value in the Index to the given number of decimals. - searchsorted(value[, side, sorter])- Find indices where elements should be inserted to maintain order. - set_names(names, *[, level, inplace])- Set Index or MultiIndex name. - shift([periods, freq])- Shift index by desired number of time frequency increments. - slice_indexer([start, end, step])- Compute the slice indexer for input labels and step. - slice_locs([start, end, step])- Compute slice locations for input labels. - sort(*args, **kwargs)- Use sort_values instead. - sort_values(*[, return_indexer, ascending, ...])- Return a sorted copy of the index. - sortlevel([level, ascending, ...])- For internal compatibility with the Index API. - symmetric_difference(other[, result_name, sort])- Compute the symmetric difference of two Index objects. - take(indices[, axis, allow_fill, fill_value])- Return a new Index of the values selected by the indices. - to_flat_index()- Identity method. - to_frame([index, name])- Create a DataFrame with a column containing the Index. - to_list()- Return a list of the values. - to_numpy([dtype, copy, na_value])- A NumPy ndarray representing the values in this Series or Index. - to_series([index, name])- Create a Series with both index and values equal to the index keys. - tolist()- Return a list of the values. - transpose(*args, **kwargs)- Return the transpose, which is by definition self. - union(other[, sort])- Form the union of two Index objects. - unique([level])- Return unique values in the index. - value_counts([normalize, sort, ascending, ...])- Return a Series containing counts of unique values. - view([cls])- where(cond[, other])- Replace values where the condition is False.