pandas.Index.duplicated#
- Index.duplicated(keep='first')[source]#
- Indicate duplicate index values. - Duplicated values are indicated as - Truevalues in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated.- Parameters:
- keep{‘first’, ‘last’, False}, default ‘first’
- The value or values in a set of duplicates to mark as missing. - ‘first’ : Mark duplicates as - Trueexcept for the first occurrence.
- ‘last’ : Mark duplicates as - Trueexcept for the last occurrence.
- False: Mark all duplicates as- True.
 
 
- Returns:
- np.ndarray[bool]
 
 - See also - Series.duplicated
- Equivalent method on pandas.Series. 
- DataFrame.duplicated
- Equivalent method on pandas.DataFrame. 
- Index.drop_duplicates
- Remove duplicate values from Index. 
 - Examples - By default, for each set of duplicated values, the first occurrence is set to False and all others to True: - >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) - which is equivalent to - >>> idx.duplicated(keep='first') array([False, False, True, False, True]) - By using ‘last’, the last occurrence of each set of duplicated values is set on False and all others on True: - >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) - By setting keep on - False, all duplicates are True:- >>> idx.duplicated(keep=False) array([ True, False, True, False, True])