This function allows expressing computations in a TensorFlow graph as
Python functions. In particular, it wraps a Python function func
in a once-differentiable TensorFlow operation that executes it with eager
execution enabled. As a consequence, tf.py_function makes it
possible to express control flow using Python constructs (if, while,
for, etc.), instead of TensorFlow control flow constructs (tf.cond,
tf.while_loop). For example, you might use tf.py_function to
implement the log huber function:
You can also use tf.py_function to debug your models at runtime
using Python tools, i.e., you can isolate portions of your code that
you want to debug, wrap them in Python functions and insert pdb tracepoints
or print statements as desired, and wrap those functions in
tf.py_function.
For more information on eager execution, see the
Eager guide.
tf.py_function is similar in spirit to tf.compat.v1.py_func, but unlike
the latter, the former lets you use TensorFlow operations in the wrapped
Python function. In particular, while tf.compat.v1.py_func only runs on CPUs
and wraps functions that take NumPy arrays as inputs and return NumPy arrays
as outputs, tf.py_function can be placed on GPUs and wraps functions
that take Tensors as inputs, execute TensorFlow operations in their bodies,
and return Tensors as outputs.
Calling tf.py_function will acquire the Python Global Interpreter Lock
(GIL) that allows only one thread to run at any point in time. This will
preclude efficient parallelization and distribution of the execution of the
program.
The body of the function (i.e. func) will not be serialized in a
GraphDef. Therefore, you should not use this function if you need to
serialize your model and restore it in a different environment.
The operation must run in the same address space as the Python program
that calls tf.py_function(). If you are using distributed
TensorFlow, you must run a tf.distribute.Server in the same process as the
program that calls tf.py_function() and you must pin the created
operation to a device in that server (e.g. using with tf.device():).
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[],null,["# tf.py_function\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.12.1/tensorflow/python/ops/script_ops.py#L419-L520) |\n\nWraps a python function into a TensorFlow op that executes it eagerly.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.py_function`](https://www.tensorflow.org/api_docs/python/tf/py_function)\n\n\u003cbr /\u003e\n\n tf.py_function(\n func, inp, Tout, name=None\n )\n\nThis function allows expressing computations in a TensorFlow graph as\nPython functions. In particular, it wraps a Python function `func`\nin a once-differentiable TensorFlow operation that executes it with eager\nexecution enabled. As a consequence, [`tf.py_function`](../tf/py_function) makes it\npossible to express control flow using Python constructs (`if`, `while`,\n`for`, etc.), instead of TensorFlow control flow constructs ([`tf.cond`](../tf/cond),\n[`tf.while_loop`](../tf/while_loop)). For example, you might use [`tf.py_function`](../tf/py_function) to\nimplement the log huber function: \n\n def log_huber(x, m):\n if tf.abs(x) \u003c= m:\n return x**2\n else:\n return m**2 * (1 - 2 * tf.math.log(m) + tf.math.log(x**2))\n\n x = tf.constant(1.0)\n m = tf.constant(2.0)\n\n with tf.GradientTape() as t:\n t.watch([x, m])\n y = tf.py_function(func=log_huber, inp=[x, m], Tout=tf.float32)\n\n dy_dx = t.gradient(y, x)\n assert dy_dx.numpy() == 2.0\n\nYou can also use [`tf.py_function`](../tf/py_function) to debug your models at runtime\nusing Python tools, i.e., you can isolate portions of your code that\nyou want to debug, wrap them in Python functions and insert `pdb` tracepoints\nor print statements as desired, and wrap those functions in\n[`tf.py_function`](../tf/py_function).\n\nFor more information on eager execution, see the\n[Eager guide](https://tensorflow.org/guide/eager).\n\n[`tf.py_function`](../tf/py_function) is similar in spirit to [`tf.compat.v1.py_func`](../tf/compat/v1/py_func), but unlike\nthe latter, the former lets you use TensorFlow operations in the wrapped\nPython function. In particular, while [`tf.compat.v1.py_func`](../tf/compat/v1/py_func) only runs on CPUs\nand wraps functions that take NumPy arrays as inputs and return NumPy arrays\nas outputs, [`tf.py_function`](../tf/py_function) can be placed on GPUs and wraps functions\nthat take Tensors as inputs, execute TensorFlow operations in their bodies,\nand return Tensors as outputs.\n| **Note:** We recommend to avoid using [`tf.py_function`](../tf/py_function) outside of prototyping and experimentation due to the following known limitations:\n\n- Calling [`tf.py_function`](../tf/py_function) will acquire the Python Global Interpreter Lock\n (GIL) that allows only one thread to run at any point in time. This will\n preclude efficient parallelization and distribution of the execution of the\n program.\n\n- The body of the function (i.e. `func`) will not be serialized in a\n `GraphDef`. Therefore, you should not use this function if you need to\n serialize your model and restore it in a different environment.\n\n- The operation must run in the same address space as the Python program\n that calls [`tf.py_function()`](../tf/py_function). If you are using distributed\n TensorFlow, you must run a [`tf.distribute.Server`](../tf/distribute/Server) in the same process as the\n program that calls [`tf.py_function()`](../tf/py_function) and you must pin the created\n operation to a device in that server (e.g. using `with tf.device():`).\n\n- Currently [`tf.py_function`](../tf/py_function) is not compatible with XLA. Calling\n [`tf.py_function`](../tf/py_function) inside [`tf.function(jit_compile=True)`](../tf/function) will raise an\n error.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `func` | A Python function that accepts `inp` as arguments, and returns a value (or list of values) whose type is described by `Tout`. |\n| `inp` | Input arguments for `func`. A list whose elements are `Tensor`s or `CompositeTensors` (such as [`tf.RaggedTensor`](../tf/RaggedTensor)); or a single `Tensor` or `CompositeTensor`. |\n| `Tout` | The type(s) of the value(s) returned by `func`. One of the following. \u003cbr /\u003e - If `func` returns a `Tensor` (or a value that can be converted to a Tensor): the [`tf.DType`](../tf/dtypes/DType) for that value. - If `func` returns a `CompositeTensor`: The [`tf.TypeSpec`](../tf/TypeSpec) for that value. - If `func` returns `None`: the empty list (`[]`). - If `func` returns a list of `Tensor` and `CompositeTensor` values: a corresponding list of [`tf.DType`](../tf/dtypes/DType)s and [`tf.TypeSpec`](../tf/TypeSpec)s for each value. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| The value(s) computed by `func`: a `Tensor`, `CompositeTensor`, or list of `Tensor` and `CompositeTensor`; or an empty list if `func` returns `None`. ||\n\n\u003cbr /\u003e"]]