The need for transposed convolutions generally arises
from the desire to use a transformation going in the opposite direction
of a normal convolution, i.e., from something that has the shape of the
output of some convolution to something that has the shape of its input
while maintaining a connectivity pattern that is compatible with
said convolution.
Arguments
filters
Integer, the dimensionality of the output space (i.e. the number
of filters in the convolution).
kernel_size
A tuple or list of 2 positive integers specifying the spatial
dimensions of the filters. Can be a single integer to specify the same
value for all spatial dimensions.
strides
A tuple or list of 2 positive integers specifying the strides
of the convolution. Can be a single integer to specify the same value for
all spatial dimensions.
padding
one of "valid" or "same" (case-insensitive).
data_format
A string, one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, height, width).
activation
Activation function. Set it to None to maintain a
linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default
initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the
kernel after being updated by an Optimizer (e.g. used to implement
norm constraints or value constraints for layer weights). The function
must take as input the unprojected variable and must return the
projected variable (which must have the same shape). Constraints are
not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the
bias after being updated by an Optimizer.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.layers.Conv2DTranspose\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/layers/convolutional.py#L1100-L1181) |\n\nTransposed 2D convolution layer (sometimes called 2D Deconvolution).\n\nInherits From: [`Conv2DTranspose`](../../tf/keras/layers/Conv2DTranspose), [`Layer`](../../tf/layers/Layer)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.layers.Conv2DTranspose`](/api_docs/python/tf/compat/v1/layers/Conv2DTranspose)\n\n\u003cbr /\u003e\n\n tf.layers.Conv2DTranspose(\n filters, kernel_size, strides=(1, 1), padding='valid',\n data_format='channels_last', activation=None, use_bias=True,\n kernel_initializer=None, bias_initializer=tf.zeros_initializer(),\n kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,\n kernel_constraint=None, bias_constraint=None, trainable=True, name=None,\n **kwargs\n )\n\nThe need for transposed convolutions generally arises\nfrom the desire to use a transformation going in the opposite direction\nof a normal convolution, i.e., from something that has the shape of the\noutput of some convolution to something that has the shape of its input\nwhile maintaining a connectivity pattern that is compatible with\nsaid convolution.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `filters` | Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). |\n| `kernel_size` | A tuple or list of 2 positive integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. |\n| `strides` | A tuple or list of 2 positive integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. |\n| `padding` | one of `\"valid\"` or `\"same\"` (case-insensitive). |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. |\n| `activation` | Activation function. Set it to None to maintain a linear activation. |\n| `use_bias` | Boolean, whether the layer uses a bias. |\n| `kernel_initializer` | An initializer for the convolution kernel. |\n| `bias_initializer` | An initializer for the bias vector. If None, the default initializer will be used. |\n| `kernel_regularizer` | Optional regularizer for the convolution kernel. |\n| `bias_regularizer` | Optional regularizer for the bias vector. |\n| `activity_regularizer` | Optional regularizer function for the output. |\n| `kernel_constraint` | Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. |\n| `bias_constraint` | Optional projection function to be applied to the bias after being updated by an `Optimizer`. |\n| `trainable` | Boolean, if `True` also add variables to the graph collection [`GraphKeys.TRAINABLE_VARIABLES`](../../tf/GraphKeys#TRAINABLE_VARIABLES) (see [`tf.Variable`](../../tf/Variable)). |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `graph` | DEPRECATED FUNCTION \u003cbr /\u003e | **Warning:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Stop using this property because tf.layers layers no longer track their graph. |\n| `scope_name` | \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]