Stay organized with collections
Save and categorize content based on your preferences.
tensorflow::ops::BroadcastDynamicShape
#include <array_ops.h>
Return the shape of s0 op s1 with broadcast.
Summary
Given s0
and s1
, tensors that represent shapes, compute r0
, the broadcasted shape. s0
, s1
and r0
are all integer vectors.
Args:
Returns:
Public attributes
Public functions
node
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-11-15 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-11-15 UTC."],[],[],null,["# tensorflow::ops::BroadcastDynamicShape Class Reference\n\ntensorflow::ops::BroadcastDynamicShape\n======================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturn the shape of s0 op s1 with broadcast.\n\nSummary\n-------\n\nGiven `s0` and `s1`, tensors that represent shapes, compute `r0`, the broadcasted shape. `s0`, `s1` and `r0` are all integer vectors.\n\nArgs:\n\n- scope: A [Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The r0 tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BroadcastDynamicShape](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a6672d4b43b8122a2ebadcb84b0a33ffa)`(const ::`[tensorflow::Scope](/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` s0, ::`[tensorflow::Input](/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` s1)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a2812a907f6572e464a52d236c77632cd) | [Operation](/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [r0](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a8f8ea2cc676b86d7bc6f4e9466033607) | `::`[tensorflow::Output](/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a315dcdda63283a0ff7e83587d69c6d18)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1af1253260f384caf7bd281e19ff4350df)`() const ` | |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_broadcast_dynamic_shape_1a69e5f15b0ae2eaf6ce1912459a56e84e)`() const ` | |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### r0\n\n```text\n::tensorflow::Output r0\n``` \n\nPublic functions\n----------------\n\n### BroadcastDynamicShape\n\n```gdscript\n BroadcastDynamicShape(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input s0,\n ::tensorflow::Input s1\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]