Skip to content

visee-sdu/MMNav

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MMNav

Installation

  • Pytorch 1.10.0
  • Python 3.8.20

Installing Dependencies

  • Install habitat-sim
git clone https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim; git checkout tags/challenge-2022; 
pip install -r requirements.txt; 
python setup.py install --headless
  • Install habitat-lab
git clone https://github.com/facebookresearch/habitat-lab.git
cd habitat-lab; git checkout tags/challenge-2022; 
pip install -e .
  • Replace the habitat folder in habitat-lab repo for the multi-robot setting
mv -r habitat your-path/habitat-lab
  • Download the prediction-related files and models here.

After unzipping, place the prediction-related files in the root directory, and also place iter.pth in the root directory. Place mask_rcnn_R_101_cat9.pth in the nav/agent/utils directory

Dataset

Download the MMNav dataset here. It include train/val/test split.

Evaluating the navigation agent

Evaluate the agent's capability using the script main.sh

Training the refine model

Run refine.py to train the refinement model

Collection of Semantic Map Dataset

We follow the PEANUT to collect the semantic map dataset and use it to train the object probability prediction model and refinement model. The corresponding dataset can be downloaded from here.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published