Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
-
Updated
May 1, 2023 - Python
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet
PyTorch custom dataset APIs -- CUB-200-2011, Stanford Dogs, Stanford Cars, FGVC Aircraft, NABirds, Tiny ImageNet, iNaturalist2017
🔬 Some personal research code on analyzing CNNs. Started with a thorough exploration of Stanford's Tiny-Imagenet-200 dataset.
Image classification on Tiny ImageNet
An implementation of MobileNetV3 with pyTorch
Official PyTorch Implementation for the "Distilling Datasets Into Less Than One Image" paper.
mini-imagenet and tiny-imagent dataset transformation for traditional classification task and also for the format for few-shot learning / meta-learning tasks
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".
Official PyTorch Implementation of Guarding Barlow Twins Against Overfitting with Mixed Samples
Implémentation du papier Colorization Transformer (ICLR 2021) - Version Expérimentale
Image Classification Training Framework for Network Distillation
Merged Geometrical Homogeneous Clustering for Image Data Reduction. An algorithm to reduce large image datasets maintaining similar accuracy.
End to end Tiny-ImageNet benchmarking stack with PyTorch, PyTorch Lightning, Hydra, UV, DVC & MLflow.
Add a description, image, and links to the tiny-imagenet topic page so that developers can more easily learn about it.
To associate your repository with the tiny-imagenet topic, visit your repo's landing page and select "manage topics."