my_list= [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6]my_list[4]39.0
my_list.append(55.2)my_list[45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6, 55.2]
my_list.pop(5)60.0
for i in range(0,10):
if my_list[i]>45:
print(my_list[i])45.4
47.4
45.8
55.2
import numpynumpy.array(my_list)array([ 45.4, 44.2, 36.8, 35.1, 39. , 47.4, 41.1, 45.8, 35.6, 55.2])
numpy.mean(my_list)42.560000000000002
numpy.std(my_list)5.9709630713981143
result = []
for i in range(0,10):
result.append(my_list[i]<45)
result = numpy.array(result)
mylist = numpy.array(my_list)
mylist[result]array([ 44.2, 36.8, 35.1, 39. , 41.1, 35.6])
numpy.max(my_list)55.200000000000003
numpy.min(my_list)35.100000000000001
import pandasiris = pandas.read_csv('c:/Users/sahluwalia/Downloads/Iris.csv', skipinitialspace=True,engine='python',)iris.head()| Id | SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species | |
|---|---|---|---|---|---|---|
| 0 | 1 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
| 1 | 2 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
| 2 | 3 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
| 3 | 4 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
| 4 | 5 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
iris = iris.drop('Id', 1)iris.head()| SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species | |
|---|---|---|---|---|---|
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
iris1 = iris.query('Species == "Iris-setosa"')iris1| SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | Species | |
|---|---|---|---|---|---|
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | Iris-setosa |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | Iris-setosa |
| 5 | 5.4 | 3.9 | 1.7 | 0.4 | Iris-setosa |
| 6 | 4.6 | 3.4 | 1.4 | 0.3 | Iris-setosa |
| 7 | 5.0 | 3.4 | 1.5 | 0.2 | Iris-setosa |
| 8 | 4.4 | 2.9 | 1.4 | 0.2 | Iris-setosa |
| 9 | 4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
| 10 | 5.4 | 3.7 | 1.5 | 0.2 | Iris-setosa |
| 11 | 4.8 | 3.4 | 1.6 | 0.2 | Iris-setosa |
| 12 | 4.8 | 3.0 | 1.4 | 0.1 | Iris-setosa |
| 13 | 4.3 | 3.0 | 1.1 | 0.1 | Iris-setosa |
| 14 | 5.8 | 4.0 | 1.2 | 0.2 | Iris-setosa |
| 15 | 5.7 | 4.4 | 1.5 | 0.4 | Iris-setosa |
| 16 | 5.4 | 3.9 | 1.3 | 0.4 | Iris-setosa |
| 17 | 5.1 | 3.5 | 1.4 | 0.3 | Iris-setosa |
| 18 | 5.7 | 3.8 | 1.7 | 0.3 | Iris-setosa |
| 19 | 5.1 | 3.8 | 1.5 | 0.3 | Iris-setosa |
| 20 | 5.4 | 3.4 | 1.7 | 0.2 | Iris-setosa |
| 21 | 5.1 | 3.7 | 1.5 | 0.4 | Iris-setosa |
| 22 | 4.6 | 3.6 | 1.0 | 0.2 | Iris-setosa |
| 23 | 5.1 | 3.3 | 1.7 | 0.5 | Iris-setosa |
| 24 | 4.8 | 3.4 | 1.9 | 0.2 | Iris-setosa |
| 25 | 5.0 | 3.0 | 1.6 | 0.2 | Iris-setosa |
| 26 | 5.0 | 3.4 | 1.6 | 0.4 | Iris-setosa |
| 27 | 5.2 | 3.5 | 1.5 | 0.2 | Iris-setosa |
| 28 | 5.2 | 3.4 | 1.4 | 0.2 | Iris-setosa |
| 29 | 4.7 | 3.2 | 1.6 | 0.2 | Iris-setosa |
| 30 | 4.8 | 3.1 | 1.6 | 0.2 | Iris-setosa |
| 31 | 5.4 | 3.4 | 1.5 | 0.4 | Iris-setosa |
| 32 | 5.2 | 4.1 | 1.5 | 0.1 | Iris-setosa |
| 33 | 5.5 | 4.2 | 1.4 | 0.2 | Iris-setosa |
| 34 | 4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
| 35 | 5.0 | 3.2 | 1.2 | 0.2 | Iris-setosa |
| 36 | 5.5 | 3.5 | 1.3 | 0.2 | Iris-setosa |
| 37 | 4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
| 38 | 4.4 | 3.0 | 1.3 | 0.2 | Iris-setosa |
| 39 | 5.1 | 3.4 | 1.5 | 0.2 | Iris-setosa |
| 40 | 5.0 | 3.5 | 1.3 | 0.3 | Iris-setosa |
| 41 | 4.5 | 2.3 | 1.3 | 0.3 | Iris-setosa |
| 42 | 4.4 | 3.2 | 1.3 | 0.2 | Iris-setosa |
| 43 | 5.0 | 3.5 | 1.6 | 0.6 | Iris-setosa |
| 44 | 5.1 | 3.8 | 1.9 | 0.4 | Iris-setosa |
| 45 | 4.8 | 3.0 | 1.4 | 0.3 | Iris-setosa |
| 46 | 5.1 | 3.8 | 1.6 | 0.2 | Iris-setosa |
| 47 | 4.6 | 3.2 | 1.4 | 0.2 | Iris-setosa |
| 48 | 5.3 | 3.7 | 1.5 | 0.2 | Iris-setosa |
| 49 | 5.0 | 3.3 | 1.4 | 0.2 | Iris-setosa |
iris.describe()| SepalLengthCm | SepalWidthCm | PetalLengthCm | PetalWidthCm | |
|---|---|---|---|---|
| count | 150.000000 | 150.000000 | 150.000000 | 150.000000 |
| mean | 5.843333 | 3.054000 | 3.758667 | 1.198667 |
| std | 0.828066 | 0.433594 | 1.764420 | 0.763161 |
| min | 4.300000 | 2.000000 | 1.000000 | 0.100000 |
| 25% | 5.100000 | 2.800000 | 1.600000 | 0.300000 |
| 50% | 5.800000 | 3.000000 | 4.350000 | 1.300000 |
| 75% | 6.400000 | 3.300000 | 5.100000 | 1.800000 |
| max | 7.900000 | 4.400000 | 6.900000 | 2.500000 |
iris.groupby(['Species']).describe()| PetalLengthCm | PetalWidthCm | SepalLengthCm | SepalWidthCm | ||
|---|---|---|---|---|---|
| Species | |||||
| Iris-setosa | count | 50.000000 | 50.000000 | 50.000000 | 50.000000 |
| mean | 1.464000 | 0.244000 | 5.006000 | 3.418000 | |
| std | 0.173511 | 0.107210 | 0.352490 | 0.381024 | |
| min | 1.000000 | 0.100000 | 4.300000 | 2.300000 | |
| 25% | 1.400000 | 0.200000 | 4.800000 | 3.125000 | |
| 50% | 1.500000 | 0.200000 | 5.000000 | 3.400000 | |
| 75% | 1.575000 | 0.300000 | 5.200000 | 3.675000 | |
| max | 1.900000 | 0.600000 | 5.800000 | 4.400000 | |
| Iris-versicolor | count | 50.000000 | 50.000000 | 50.000000 | 50.000000 |
| mean | 4.260000 | 1.326000 | 5.936000 | 2.770000 | |
| std | 0.469911 | 0.197753 | 0.516171 | 0.313798 | |
| min | 3.000000 | 1.000000 | 4.900000 | 2.000000 | |
| 25% | 4.000000 | 1.200000 | 5.600000 | 2.525000 | |
| 50% | 4.350000 | 1.300000 | 5.900000 | 2.800000 | |
| 75% | 4.600000 | 1.500000 | 6.300000 | 3.000000 | |
| max | 5.100000 | 1.800000 | 7.000000 | 3.400000 | |
| Iris-virginica | count | 50.000000 | 50.000000 | 50.000000 | 50.000000 |
| mean | 5.552000 | 2.026000 | 6.588000 | 2.974000 | |
| std | 0.551895 | 0.274650 | 0.635880 | 0.322497 | |
| min | 4.500000 | 1.400000 | 4.900000 | 2.200000 | |
| 25% | 5.100000 | 1.800000 | 6.225000 | 2.800000 | |
| 50% | 5.550000 | 2.000000 | 6.500000 | 3.000000 | |
| 75% | 5.875000 | 2.300000 | 6.900000 | 3.175000 | |
| max | 6.900000 | 2.500000 | 7.900000 | 3.800000 |
iris.groupby('Species').boxplot()Iris-setosa Axes(0.1,0.559091;0.363636x0.340909)
Iris-versicolor Axes(0.536364,0.559091;0.363636x0.340909)
Iris-virginica Axes(0.1,0.15;0.363636x0.340909)
dtype: object
!pip install seabornRequirement already satisfied: seaborn in c:\programdata\anaconda3\lib\site-packages
import seaborn as sns%matplotlib inlinesns.pairplot(iris,hue='Species')<seaborn.axisgrid.PairGrid at 0xb484a90>

