Vexor is a semantic search engine that builds reusable indexes over files and code. It supports configurable embedding and reranking providers, and exposes the same core through a Python API, a CLI tool, and an optional desktop frontend.
vexor.mp4
Vexor has been recognized and featured by the community:
- Ruan Yifeng's Weekly (Issue #379) - A leading tech newsletter in the Chinese developer community.
- Awesome Claude Skills - Curated list of best-in-class skills for AI agents.
When you remember what a file does but forget its name or location, Vexor finds it instantly—no grep patterns or directory traversal needed.
Designed for both humans and AI coding assistants, enabling semantic file discovery in autonomous agent workflows.
Download standalone binary from releases (no Python required), or:
pip install vexor # also works with pipx, uvvexor initThe wizard also runs automatically on first use when no config exists.
vexor "api client config" # defaults to search current directory
# or explicit path:
vexor search "api client config" --path ~/projects/demo --top 5
# in-memory search only:
vexor search "api client config" --no-cache Vexor auto-indexes on first search. Example output:
Vexor semantic file search results
──────────────────────────────────
# Similarity File path Lines Preview
1 0.923 ./src/config_loader.py - config loader entrypoint
2 0.871 ./src/utils/config_parse.py - parse config helpers
3 0.809 ./tests/test_config_loader.py - tests for config loader
vexor index # indexes current directory
# or explicit path:
vexor index --path ~/projects/demo --mode codeUseful for CI warmup or when auto_index is disabled.
The desktop app is experimental and not actively maintained. It may be unstable. For production use, prefer the CLI.
Download the desktop app from releases.
Vexor can also be imported and used directly from Python:
from vexor import index, search
index(path=".", mode="head")
response = search("config loader", path=".", mode="name")
for hit in response.results:
print(hit.path, hit.score)By default it reads ~/.vexor/config.json. For runtime config overrides, cache
controls, and per-call options, see docs/api/python.md.
This repo includes a skill for AI agents to use Vexor effectively:
vexor install --skills claude # Claude Code
vexor install --skills codex # CodexSkill source: plugins/vexor/skills/vexor-cli
vexor config --set-provider openai # default; also supports gemini/custom/local
vexor config --set-model text-embedding-3-small
vexor config --set-batch-size 0 # 0 = single request
vexor config --set-embed-concurrency 4 # parallel embedding requests
vexor config --set-extract-concurrency 4 # parallel file extraction workers
vexor config --set-extract-backend auto # auto|thread|process (default: auto)
vexor config --set-auto-index true # auto-index before search (default)
vexor config --rerank bm25 # optional BM25 rerank for top-k results
vexor config --rerank flashrank # FlashRank rerank (requires optional extra)
vexor config --rerank remote # remote rerank via HTTP endpoint
vexor config --set-flashrank-model ms-marco-MultiBERT-L-12 # multilingual model
vexor config --set-flashrank-model # reset FlashRank model to default
vexor config --clear-flashrank # remove cached FlashRank models
vexor config --set-remote-rerank-url https://proxy.example.com/v1/rerank
vexor config --set-remote-rerank-model bge-reranker-v2-m3
vexor config --set-remote-rerank-api-key $VEXOR_REMOTE_RERANK_API_KEY # or env var
vexor config --clear-remote-rerank # clear remote rerank config
vexor config --set-base-url https://proxy.example.com # optional proxy
vexor config --clear-base-url # reset to official endpoint
vexor config --show # view current settingsRerank defaults to off. It is highly recommended to configure the Reranker in advance to improve search accuracy.
FlashRank requires pip install "vexor[flashrank]" and caches models under ~/.vexor/flashrank.
Config stored in ~/.vexor/config.json.
vexor config --set-api-key "YOUR_KEY"Or via environment: VEXOR_API_KEY, OPENAI_API_KEY, or GOOGLE_GENAI_API_KEY.
Rerank reorders the semantic results with a secondary ranker. Candidate sizing uses
clamp(int(--top * 2), 20, 150).
Recommended defaults:
- Keep
offunless you want extra precision. - Use
bm25for lightweight lexical boosts; it is fast and lightweight. - BM25 uses a multilingual tokenizer (Bert pre-tokenizer), so it can handle CJK better.
- Use
flashrankfor stronger reranking (requirespip install "vexor[flashrank]"and downloads a model to~/.vexor/flashrank). - Use
remoteto call a hosted reranker that accepts{model, query, documents}and returns ranked indexes. - For Chinese or multi-language content, set
--set-flashrank-model ms-marco-MultiBERT-L-12. - If unset, FlashRank defaults to
ms-marco-TinyBERT-L-2-v2.
Vexor supports both remote API providers (openai, gemini, custom) and a local provider (local):
- Remote providers use
api_keyand optionalbase_url. customis OpenAI-compatible and requires bothmodelandbase_url.- Local provider ignores
api_key/base_urland only usesmodelpluslocal_cuda(CPU/GPU switch).
Install the lightweight local backend:
pip install "vexor[local]"GPU backend (requires CUDA drivers):
pip install "vexor[local-cuda]"Download a local embedding model and auto-configure Vexor:
vexor local --setup --model intfloat/multilingual-e5-smallThen use vexor search / vexor index as usual.
Local models are stored in ~/.vexor/models (clear with vexor local --clean-up).
GPU (optional): install onnxruntime-gpu (or vexor[local-cuda]) and use vexor local --setup --cuda (or vexor local --cuda).
Switch back with vexor local --cpu.
Control embedding granularity with --mode:
| Mode | Description |
|---|---|
auto |
Default. Smart routing: Python/JS/TS → code, Markdown → outline, small files → full, large files → head |
name |
Embed filename only (fastest, zero content reads) |
head |
Extract first snippet for lightweight semantic context |
brief |
Extract high-frequency keywords from PRDs/requirements docs |
full |
Chunk entire content; long documents searchable end-to-end |
code |
AST-aware chunking by module/class/function boundaries for Python and JavaScript/TypeScript; other files fall back to full |
outline |
Chunk Markdown by heading hierarchy with breadcrumbs; non-.md falls back to full |
Index cache keys derive from: --path, --mode, --include-hidden, --no-recursive, --no-respect-gitignore, --ext, --exclude-pattern.
Keep flags consistent to reuse cache; changing flags creates a separate index.
vexor config --show-index-all # list all cached indexes
vexor config --clear-index-all # clear all cached indexes
vexor index --path . --clear # clear index for specific pathRe-running vexor index only re-embeds changed files; >50% changes trigger full rebuild.
| Command | Description |
|---|---|
vexor init |
Run the interactive setup wizard |
vexor QUERY |
Shortcut for vexor search QUERY |
vexor search QUERY --path PATH |
Semantic search (auto-indexes if needed) |
vexor index --path PATH |
Build/refresh index manually |
vexor config --show |
Display current configuration |
vexor config --clear-flashrank |
Remove cached FlashRank models under ~/.vexor/flashrank |
vexor local --setup [--model MODEL] |
Download a local model and set provider to local |
vexor local --clean-up |
Remove local model cache under ~/.vexor/models |
vexor local --cuda |
Enable CUDA for local embeddings (requires onnxruntime-gpu) |
vexor local --cpu |
Disable CUDA and use CPU for local embeddings |
vexor install --skills claude |
Install Agent Skill for Claude Code |
vexor install --skills codex |
Install Agent Skill for Codex |
vexor doctor |
Run diagnostic checks (command, config, cache, API key, API connectivity) |
vexor update [--upgrade] [--pre] |
Check for new version (optionally upgrade; --pre includes pre-releases) |
vexor feedback |
Open GitHub issue form (or use gh) |
vexor alias |
Print a shell alias for vx and optionally apply it |
| Flag | Description |
|---|---|
--path PATH |
Target directory (default: current working directory) |
--mode MODE |
Index mode (auto/name/head/brief/full/code/outline) |
--top K / -k |
Number of results (default: 5) |
--ext .py,.md / -e |
Filter by extension (repeatable) |
--exclude-pattern PATTERN |
Exclude paths by gitignore-style pattern (repeatable; .js treated as **/*.js) |
--include-hidden / -i |
Include hidden files |
--no-recursive / -n |
Don't recurse into subdirectories |
--no-respect-gitignore |
Include gitignored files |
--format porcelain |
Script-friendly TSV output |
--format porcelain-z |
NUL-delimited output |
--no-cache |
In-memory only; do not read/write index cache |
Porcelain output fields: rank, similarity, path, chunk_index, start_line, end_line, preview (line fields are - when unavailable).
See docs for more details.
Contributions, issues, and PRs welcome! Star if you find it helpful.
