Skip to content

scalaboy/GridOpAgent_dev

Repository files navigation

Semi-Markov Afterstate Actor-Critic (SMAAC)

This repository is the official implementation of Winning the L2RPN Challenge: Power Grid Management via Semi-Markov Afterstate Actor-Critic.

Environment setting

ubuntu /linux 下载anaconda https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-x86_64.sh

Create conda environment

conda env create -f install.yml
conda activate smaac

lightsim2grid installation

git clone https://github.com/scalaboy/lightsim2grid
cd lightsim2grid
git submodule init
git submodule update
make clean
make
pip install -U pybind11
pip install -U .

Data download

Since chronic data is required to train or evaluate, please Download.
Then, replace data/ with it.

cd SMAAC
rm -rf data
tar -zxvf data.tar.gz

Scripts

Train

The detail of arguments is provided in test.py.

python test.py -n=[experiment_name] -s=[seed] -c=[environment_name (5, sand, wcci)]

# Example
python test.py -n=5_run -s=0 -c=5

get result
[  98] Valid: score 97.79145444923583 | step 864.0
[Test Ch  17( 0)] 864/864 ( 96) Score:   98.7509
[Test Ch  17( 1)] 864/864 (  8) Score:   98.5088
[Test Ch  17( 2)] 864/864 (122) Score:   98.3613
[Test Ch  17( 3)] 864/864 (100) Score:   97.5027
[Test Ch  17( 4)] 864/864 (  8) Score:   95.8336
[  99] Valid: score 97.79145444923583 | step 864.0
[Test Ch  17( 0)] 864/864 ( 96) Score:   98.7509
[Test Ch  17( 1)] 864/864 (  8) Score:   98.5088
[Test Ch  17( 2)] 864/864 (122) Score:   98.3613
[Test Ch  17( 3)] 864/864 (100) Score:   97.5027
[Test Ch  17( 4)] 864/864 (  8) Score:   95.8336
[ 100] Valid: score 97.79145444923583 | step 864.0

or
python test.py -n=wcci_run -s=0 -c=wcci

Evaluate

The detail of arguments is provided in evaluate.py.

python evaluate.py -n=[experiment_dirname] -c=[environment_name]

# Example
python evaluate.py -n=wcci_run_0 -c=wcci

# If you want to evaluate an example trained model on WCCI, execute as below
python evaluate.py -n=example

References

@inproceedings{yoon2021winning,
    title={Winning the L2{\{}RPN{\}} Challenge: Power Grid Management via Semi-Markov Afterstate Actor-Critic},
    author={Deunsol Yoon and Sunghoon Hong and Byung-Jun Lee and Kee-Eung Kim},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=LmUJqB1Cz8}
}

Credit

Our code is based on rte-france's Grid2Op (https://github.com/rte-france/Grid2Op)

License Information

Copyright (c) 2020 KAIST-AILab

This source code is subject to the terms of the Mozilla Public License (MPL) v2 also available here

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published