This git cloned from https://github.com/icpm/super-resolution change some modifications.
- Add CARN method
- Add different optimization method
- Log the checkppoints and _logs
- Log the result
- ADAM
- AdamSparse
- Adamax
- Adadelta
- Adagrad
- ASGD
- LAMB
- RProp
- SGD
- RMSprop
- SubPixelCNN
- SRCNN
- SRCNNT
- VDSR
- EDSR
- FSRCNN
- DRCN
batchsize should be small, batchsize=4 - SRGAN
change save checkpoint path patterns - DBPN
batchsize should be small, batchsize=1 - MemNet
- CARN
import os
from google.colab import drive
drive.mount('/content/gdrive/')
!pip install tensorboardX
os.chdir('/content/gdrive/My Drive/Projects/master-code')
!git clone https://github.com/sahebi/basic-super-resolution
os.chdir('/content/gdrive/My Drive/Projects/master-code/basic-super-resolution')
!python train_all.py --logprefix test_BSDS300_2x -uf 2 --dataset BSDS300 --batchSize 128 --testBatchSize 128 --nEpochs 1500 --iter 3
python train.py --logprefix testmodel -uf 4 --dataset BSDS300 --batchSize 16 --testBatchSize 8 --nEpochs 1 --model srcnnt
python train.py --logprefix test1epoch -uf 4 --dataset COCO --batchSize 16 --testBatchSize 8 --nEpochs 1 --model srcnnt
python super_resolve.py --input result/BSD300_3096.jpg/4x/lr.jpg --model model/carn_488.pth --output result/BSD300_3096.jpg/4x/carn.jpg