Skip to content

Test basic super resolution methods with different optimization methods

Notifications You must be signed in to change notification settings

sahebi/basic-super-resolution

Repository files navigation

Basic Super Resolution

This git cloned from https://github.com/icpm/super-resolution change some modifications.

  • Add CARN method
  • Add different optimization method
  • Log the checkppoints and _logs
  • Log the result

Optimizer

  • ADAM
  • AdamSparse
  • Adamax
  • Adadelta
  • Adagrad
  • ASGD
  • LAMB
  • RProp
  • SGD
  • RMSprop

Single Image Super Resolution Methods

  • SubPixelCNN
  • SRCNN
  • SRCNNT
  • VDSR
  • EDSR
  • FSRCNN
  • DRCN batchsize should be small, batchsize=4
  • SRGAN change save checkpoint path patterns
  • DBPN batchsize should be small, batchsize=1
  • MemNet
  • CARN
Mount google drive install basic super resolution package
import os
from google.colab import drive
drive.mount('/content/gdrive/')

!pip install tensorboardX

os.chdir('/content/gdrive/My Drive/Projects/master-code')
!git clone https://github.com/sahebi/basic-super-resolution
Run train all python script
os.chdir('/content/gdrive/My Drive/Projects/master-code/basic-super-resolution')

!python train_all.py --logprefix test_BSDS300_2x -uf 2 --dataset BSDS300 --batchSize 128 --testBatchSize 128 --nEpochs 1500 --iter 3

Train Model

python train.py --logprefix testmodel -uf 4 --dataset BSDS300 --batchSize 16 --testBatchSize 8 --nEpochs 1 --model srcnnt

python train.py --logprefix test1epoch -uf 4 --dataset COCO --batchSize 16 --testBatchSize 8 --nEpochs 1 --model srcnnt

Run super resolution

python super_resolve.py --input result/BSD300_3096.jpg/4x/lr.jpg --model model/carn_488.pth --output result/BSD300_3096.jpg/4x/carn.jpg

About

Test basic super resolution methods with different optimization methods

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published