Skip to content

rupeshs/InstantStyle

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation

Haofan Wang* · Qixun Wang · Xu Bai · Zekui Qin · Anthony Chen

InstantX Team

*corresponding authors

GitHub

InstantStyle is a general framework that employs two straightforward yet potent techniques for achieving an effective disentanglement of style and content from reference images.

Release

Demos

Stylized Synthesis

Image-based Stylized Synthesis

Comparison with Previous Works

Usage

import torch
from diffusers import StableDiffusionXLPipeline
from PIL import Image

from ip_adapter import IPAdapterXL

base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
device = "cuda"

# load SDXL pipeline
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# load ip-adapter
# target_blocks=["blocks"] for original IP-Adapter
# target_blocks=["up_blocks.0.attentions.1"] for style blocks only
# target_blocks = ["up_blocks.0.attentions.1", "down_blocks.2.attentions.1"] # for style+layout blocks
ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device, target_blocks=["up_blocks.0.attentions.1"])

image = "./assets/0.jpg"
image = Image.open(image)
image.resize((512, 512))

# generate image variations with only image prompt
images = ip_model.generate(pil_image=image,
                            prompt="a cat, masterpiece, best quality, high quality",
                            negative_prompt= "text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
                            scale=1.0,
                            guidance_scale=5,
                            num_samples=1,
                            num_inference_steps=30, 
                            seed=42,
                            #neg_content_prompt="a rabbit",
                            #neg_content_scale=0.5,
                            )

images[0].save("result.png")

Sponsor Us

If you find this project useful, you can buy us a coffee via Github Sponsor! We support Paypal and WeChat Pay.

Cite

If you find InstantStyle useful for your research and applications, please cite us using this BibTeX:

@misc{wang2024instantstyle,
      title={InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation}, 
      author={Haofan Wang and Qixun Wang and Xu Bai and Zekui Qin and Anthony Chen},
      year={2024},
      eprint={2404.02733},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

For any question, please feel free to contact us via haofanwang.ai@gmail.com.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%