Skip to content
/ KGen Public

Knowledge graphs generation from unstructured text.

License

Notifications You must be signed in to change notification settings

rossanez/KGen

Repository files navigation

KGen

Knowledge Graphs Generation from unstructured text

Running instructions:

1. Start CoreNLP server:

$ python3 common/stanfordcorenlp/server.py

(syntax: python3 common/stanfordcorenlp/server.py -h)

2. With the server started, run the pipeline in another shell, e.g.:

$ python3 pipeline.py text.txt -p senna -s -k cso -ng

(syntax: python3 pipeline.py -h)

Alternatively, each stage may be executed outside the pipeline, e.g.:

2.1. Preprocessing:

$ cd preprocessor
$ python3 preprocessor.py text.txt

(syntax: python3 preprocessor.py -h)

2.2. Facts extractor:

$ cd facts_extractor
$ python3 extractor.py text_preprocessed.txt -p senna -s

(syntax: python3 extractor.py -h)

2.3. Ontology linker (Optional stage, used to obtain ontology links):

$ cd kb_linker
$ python3 linker.py text_preprocessed.txt -k cso

(syntax: python3 linker.py -h)

2.4. RDF maker:

$ cd rdf_maker
$ python3 maker.py text_preprocessed_triples.txt -l text_preprocessed_links.txt

(syntax: python3 maker.py -h)

2.5. PNG generator (Optional stage, used to obtain a PNG image representing the KG):

$ cd graph_generator
$ python3 generator.py text_preprocessed_kg.ttl

(syntax: python3 generator.py -h)

3. When done, stop the server

$python3 common/stanfordcorenlp/server.py -k

(or simply Ctrl+C in its shell)

Citing KGen

See also

  • TempKG: Related tools to conduct analyses and generate visualizations on Temporal Knowledge Graphs.

About

Knowledge graphs generation from unstructured text.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published