This project used to segment the LiveCell dataset
git clone https://github.com/rishabhmohatta/LiveCell_segmentation.git
cd LiveCell_segmentationpip install -r requirements.txt#Downlad the weights from this link and copy in folder LiveCell_segmentation
https://drive.google.com/file/d/1vj3glsdqkCFdSJrTMgESszeMl2LhRd5S/view?usp=sharinguvicorn app:app --host 0.0.0.0 --port 8000curl -X POST -F "file=@test.jpg" "http://127.0.0.1:8000/predict/" --output result.pngdocker build -t unet-api .docker run -p 8000:8000 unet-apiThe U-Net model was trained on the LIVECell dataset using:
- Model: Unet
- Input Image Size: 256x256
To evaluate the model performance, mAP (Mean Average Precision) was calculated on the test dataset.
python evaluate.py --model unet_livecell_best.pth --images test/ --labels test.json [--num_images]Example output:
For 100 test images: mAP: 0.84, IoU: 0.81
For total(1500) test images : mAP: 0.83, IoU: 0.78- U-Net Architecture Paper: Ronneberger et al., 2015
- LIVECell Dataset Paper: Edlund et al., 2021
- PyTorch U-Net Implementation: GitHub - milesial/Pytorch-UNet
- Model trained on single class as Dataset has 8 type of cell can create a multiclass model
- Optimizing model for real time inference (like converting it into onnx ,trt,etc)
- Training the model with an pretrained resnet architecture as a backbone for better accuracy
- Using other different model like deeplab for segmentation