Skip to content

rishabhmohatta/LiveCell_segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LiveCell_segmentation

This project used to segment the LiveCell dataset


Setup & Installation

1️ Clone the Repository

git clone https://github.com/rishabhmohatta/LiveCell_segmentation.git
cd LiveCell_segmentation

2️ Install Dependencies

pip install -r requirements.txt

**3 Download Weights##

#Downlad the weights from this link and copy in folder LiveCell_segmentation
https://drive.google.com/file/d/1vj3glsdqkCFdSJrTMgESszeMl2LhRd5S/view?usp=sharing

4 Start FastAPI Server

uvicorn app:app --host 0.0.0.0 --port 8000

API Usage

1️ Make a Prediction

(Get Output Image Directly)

curl -X POST -F "file=@test.jpg" "http://127.0.0.1:8000/predict/" --output result.png

Docker Deployment

1️ Build Docker Image

docker build -t unet-api .

2️ Run the Container

docker run -p 8000:8000 unet-api

Training the Model

The U-Net model was trained on the LIVECell dataset using:

  • Model: Unet
  • Input Image Size: 256x256

** mAP Score**

To evaluate the model performance, mAP (Mean Average Precision) was calculated on the test dataset.

Compute mAP on Test Dataset:

python evaluate.py --model unet_livecell_best.pth --images test/ --labels test.json [--num_images]

Example output:

For 100 test images: mAP: 0.84, IoU: 0.81
For total(1500) test images : mAP: 0.83, IoU: 0.78

📄 References


To-Do

  • Model trained on single class as Dataset has 8 type of cell can create a multiclass model
  • Optimizing model for real time inference (like converting it into onnx ,trt,etc)
  • Training the model with an pretrained resnet architecture as a backbone for better accuracy
  • Using other different model like deeplab for segmentation

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published