Encode failure into your program.
This package contains a Result type that represents either success (Ok) or failure (Err).
For asynchronous tasks, neverthrow offers a ResultAsync class which wraps a Promise<Result> and enables chaining.
ResultAsync is thenable meaning it behaves exactly like a native Promise<Result>: the underlying Result can be accessed using the await or .then() operators.
neverthrow also exposes chain(...) methods for chaining asynchronous tasks in a functional style (docs below). However, these methods might be deprecated in the future. It is advised to use the ResultAsync instead.
Read the blog post which explains why you'd want to use this package.
This package works for both JS and TypeScript. However, the types that this package provides will allow you to get compile-time guarantees around error handling if you are using TypeScript.
neverthrow draws inspiration from Rust, and Elm. It is also a great companion to fp-ts.
Need to see real-life examples of how to leverage this package for error handling? See this repo: https://github.com/parlez-vous/server
> npm install neverthrowCreate Ok or Err instances with the ok and err functions.
import { ok, err } from 'neverthrow'
// something awesome happend
const yesss = ok(someAesomeValue)
// moments later ...
const mappedYes = yesss.map(doingSuperUsefulStuff)
// neverthrow uses type-guards to differentiate between Ok and Err instances
// Mode info: https://www.typescriptlang.org/docs/handbook/advanced-types.html#type-guards-and-differentiating-types
if (mappedYes.isOk()) {
// using type guards, we can access an Ok instance's `value` field
doStuffWith(mappedYes.value)
} else {
// because of type guards
// typescript knows that mappedYes is an Err instance and thus has a `error` field
doStuffWith(mappedYes.error)
}Result is defined as follows:
type Result<T, E> = Ok<T, E> | Err<T, E>Ok<T, E>: contains the success value of type T
Err<T, E>: contains the failure value of type E
Asynchronous methods can return a ResultAsync type instead of a Promise<Result> in order to enable further chaining.
ResultAsync is thenable meaning it behaves exactly like a native Promise<Result>: the underlying Result can be accessed using the await or .then() operators.
This is useful for handling multiple asynchronous apis like database queries, timers, http requests, ...
Example:
import { errAsync, ResultAsync } from 'neverthrow'
import { insertIntoDb } from 'imaginary-database'
// Let's assume insertIntoDb has the following signature:
// insertIntoDb(user: User): Promise<User>
// We can create a synchronous method that returns a ResultAsync
function addUserToDatabase(user: User): ResultAsync<User, Error> {
if (user.name.length < 3) {
// Throw a async result from a synchronous block thanks to the errAsync helper
return errAsync(new Error('Username is too short'))
}
// Wrap the async method into a ResultAsync thanks to fromPromise
// The seconds argument catches the error from the promise
return ResultAsync.fromPromise(insertIntoDb(user), () => new Error('Database error'))
}
// We can now call the method above
const asyncRes = addUserToDatabase({ name: 'Tom' }) // asyncRes is a `ResultAsync<User, Error>`
// We can chain the ResultAsync to build another ResultAsync (see full api below)
const asyncRes2 = asyncRes.map((user: User) => user.name) // asyncRes2 is a `ResultAsync<string, Error>`
// A ResultAsync acts exactly like a Promise<Result>
// It can be transformed back into a Result just like a Promise would:
// using await
const res = await asyncRes
// res is a Result<string, Error>
if (res.isErr()) {
console.log('Oops fail: ' + res.error.message)
} else {
console.log('Successfully inserted user ' + res.value)
}
// using then
asyncRes.then(res => {
// res is Result<string, Error>
if (res.isErr()) {
console.log('Oops fail: ' + res.error.message)
} else {
console.log('Successfully inserted user ' + res.value)
}
})neverthrow exposes the following:
okconvenience function to create anOkvariant ofResulterrconvenience function to create anErrvariant ofResultOkclass for you to construct anOkvariant in an OOP way usingnewErrclass for you to construct anErrvariant in an OOP way usingnewResulttype - only available in TypeScriptResultAsyncclassokAsyncconvenience function to create aResultAsynccontaining anOktypeResulterrAsyncconvenience function to create aResultAsynccontaining anErrtypeResultchainand all of its variants (docs below) - for chaining sequential asynchronous operations that returnResults
import { ok, Ok, err, Err, Result } from 'neverthrow'
// chain api available as well
import { chain, chain3, chain4, chain5, chain6, chain7, chain8 } from 'neverthrow'This library takes advantage of TypeScript's type-guard feature.
By simply doing an if (using .isOk or .isErr) check on your result, you can inform the TypeScript compiler of whether you have Ok instance, or an Err instance, and subsequently you can get access to the value or error value in the respective instances.
Example:
import { ok, err } from 'neverthrow'
const example1 = ok(123)
const example2 = err('abc')
if (example1.isOk()) {
// you now have access to example1.value
} else {
// you now have access to example1.error
}
if (example2.isErr()) {
// you now have access to example2.error
} else {
// you now have access to example2.value
}Constructs an Ok variant of Result
Signature:
ok<T, E>(value: T): Ok<T, E> { ... }Example:
import { ok } from 'neverthrow'
const myResult = ok({ myData: 'test' }) // instance of `Ok`
myResult.isOk() // true
myResult.isErr() // falseConstructs an Err variant of Result
Signature:
err<T, E>(err: E): Err<T, E> { ... }Example:
import { err } from 'neverthrow'
const myResult = err('Oh noooo') // instance of `Err`
myResult.isOk() // false
myResult.isErr() // trueReturns true if the result is an Ok variant
Signature:
isOk(): boolean { ... }Returns true if the result is an Err variant
Signature:
isErr(): boolean { ... }Maps a Result<T, E> to Result<U, E> by applying a function to a contained Ok value, leaving an Err value untouched.
This function can be used to compose the results of two functions.
Signature:
type MapFunc = <T>(f: T) => U
map<U>(fn: MapFunc): Result<U, E> { ... }Example:
const { getLines } from 'imaginary-parser'
// ^ assume getLines has the following signature:
// getLines(str: string): Result<Array<string>, Error>
// since the formatting is deemed correct by `getLines`
// then it means that `linesResult` is an Ok
// containing an Array of strings for each line of code
const linesResult = getLines('1\n2\n3\n4\n')
// this Result now has a Array<number> inside it
const newResult = linesResult.map(
(arr: Array<string>) => arr.map(parseInt)
)
newResult.isOk() // trueMaps a Result<T, E> to Result<T, F> by applying a function to a contained Err value, leaving an Ok value untouched.
This function can be used to pass through a successful result while handling an error.
Signature:
type MapFunc = <E>(e: E) => F
mapErr<U>(fn: MapFunc): Result<T, F> { ... }Example:
import { parseHeaders } 'imaginary-http-parser'
// imagine that parseHeaders has the following signature:
// parseHeaders(raw: string): Result<SomeKeyValueMap, ParseError>
const rawHeaders = 'nonsensical gibberish and badly formatted stuff'
const parseResult = parseHeaders(rawHeaders)
parseResult.mapErr(parseError => {
res.status(400).json({
error: parseError
})
})
parseResult.isErr() // trueSame idea as map above. Except you must return a new Result.
The returned value will be a Result.
This is useful for when you need to do a subsequent computation using the inner T value, but that computation might fail.
andThen is really useful as a tool to flatten a Result<Result<A, E2>, E1> into a Result<A, E2> (see example below).
Signature:
type AndThenFunc = (t: T) => Result<U, E>
andThen<U>(f: AndThenFunc): Result<U, E> { ... }Example 1: Chaining Results
import { err, ok } from 'neverthrow'
const sq = (n: number): Result<number, number> => ok(n ** 2)
ok(2)
.andThen(sq)
.andThen(sq) // Ok(16)
ok(2)
.andThen(sq)
.andThen(err) // Err(4)
ok(2)
.andThen(err)
.andThen(sq) // Err(2)
err(3)
.andThen(sq)
.andThen(sq) // Err(3)Example 2: Flattening Nested Results
// It's common to have nested Results
const nested = ok(ok(1234))
// notNested is a Ok(1234)
const notNested = nested.andThen(innerResult => innerResult)Same idea as andThen above. Except you must return a new ResultAsync.
The returned value will be a ResultAsync.
Signature:
type AndThenAsyncFunc = (t: T) => ResultAsync<U, E>
asyncAndThen<U>(f: AndThenAsyncFunc): ResultAsync<U, E> { ... }Given 2 functions (one for the Ok variant and one for the Err variant) execute the function that matches the Result variant.
Match callbacks do not necessitate to return a Result, however you can return a Result if you want to.
Signature:
match<A>(
okFn: (t: T) => A,
errFn: (e: E) => A
): A => { ... }match is like chaining map and mapErr, with the distinction that with match both functions must have the same return type.
Example:
const result = computationThatMightFail()
const successCallback = (someNumber: number) => {
console.log('> number is: ', someNumber)
}
const failureCallback = (someFailureValue: string) => {
console.log('> boooooo')
}
// method chaining api
// note that you DONT have to append mapErr
// after map which means that you are not required to do
// error handling
result.map(successCallback).mapErr(failureCallback)
// match api
// works exactly the same as above,
// except, now you HAVE to do error handling :)
myval.match(successCallback, failureCallback)Similar to map except for two things:
- the mapping function must return a
Promise - asyncMap returns a
ResultAsync
You can then chain the result of asyncMap using the ResultAsync apis (like map, mapErr, andThen, etc.)
Signature:
type MappingFunc = (t: T) => Promise<U>
asyncMap<U>(fn: MappingFunc): ResultAsync<U, E> { ... }Example:
import { parseHeaders } 'imaginary-http-parser'
// imagine that parseHeaders has the following signature:
// parseHeaders(raw: string): Result<SomeKeyValueMap, ParseError>
const asyncRes = parseHeaders(rawHeader)
.map(headerKvMap => headerKvMap.Authorization)
.asyncMap(findUserInDatabase)Note that in the above example if parseHeaders returns an Err then .map and .asyncMap will not be invoked, and asyncRes variable will resolve to an Err when turned into a Result using await or .then().
Constructs an Ok variant of ResultAsync
Signature:
okAsync<T, E>(value: T): ResultAsync<T, E>Example:
import { okAsync } from 'neverthrow'
const myResultAsync = okAsync({ myData: 'test' }) // instance of `ResultAsync`
const myResult = await myResultAsync // instance of `Ok`
myResult.isOk() // true
myResult.isErr() // falseConstructs an Err variant of ResultAsync
Signature:
errAsync<T, E>(err: E): ResultAsync<T, E>Example:
import { errAsync } from 'neverthrow'
const myResultAsync = errAsync('Oh nooo') // instance of `ResultAsync`
const myResult = await myResultAsync // instance of `Err`
myResult.isOk() // false
myResult.isErr() // trueTransforms a Promise<T> into a ResultAsync<T, E>.
The second argument handles the rejection case of the promise. If it is ommited, the code might throw because neverthrow does not know if the promise you are passing to fromPromise has any promise rejection logic associated to it (via a .catch method call or catch (err) {} block).
Signature:
fromPromise<U, E>(p: Promise<U>, f?: (e: unknown) => E): ResultAsync<U, E> { ... }Example:
import { insertIntoDb } from 'imaginary-database'
// insertIntoDb(user: User): Promise<User>
const res = ResultAsync.fromPromise(insertIntoDb(myUser), () => new Error('Database error'))
// res has a type of ResultAsync<User, Error>Maps a ResultAsync<T, E> to ResultAsync<U, E> by applying a function to a contained Ok value, leaving an Err value untouched.
The applied function can be synchronous or asynchronous (returning a Promise<U>) with no impact to the return type.
This function can be used to compose the results of two functions.
Signature:
type MapFunc = <T>(f: T |Â Promise<T>) => U
map<U>(fn: MapFunc): ResultAsync<U, E> { ... }Example:
const { findUsersIn } from 'imaginary-database'
// ^ assume findUsersIn has the following signature:
// findUsersIn(country: string): ResultAsync<Array<User>, Error>
const usersInCanada = findUsersIn("Canada")
// Let's assume we only need their names
const namesInCanada = usersInCanada.map((users: Array<User>) => users.map(user => user.name))
// namesInCanada is of type ResultAsync<Array<string>, Error>
// We can extract the Result using .then() or await
namesInCanada.then((namesResult: Result<Array<string>, Error>) => {
if(namesResult.isErr()){
console.log("Couldn't get the users from the database", namesResult.error)
}
else{
console.log("Users in Canada are named: " + namesResult.value.join(','))
}
})Maps a ResultAsync<T, E> to ResultAsync<T, F> by applying a function to a contained Err value, leaving an Ok value untouched.
The applied function can be synchronous or asynchronous (returning a Promise<F>) with no impact to the return type.
This function can be used to pass through a successful result while handling an error.
Signature:
type MapFunc = <E>(e: E) => F | Promise<F>
mapErr<U>(fn: MapFunc): ResultAsync<T, F> { ... }Example:
const { findUsersIn } from 'imaginary-database'
// ^ assume findUsersIn has the following signature:
// findUsersIn(country: string): ResultAsync<Array<User>, Error>
// Let's say we need to low-level errors from findUsersIn to be more readable
const usersInCanada = findUsersIn("Canada").mapErr((e: Error) => {
// The only error we want to pass to the user is "Unknown country"
if(e.message === "Unknown country"){
return e.message
}
// All other errors will be labelled as a system error
return "System error, please contact an administrator."
})
// usersInCanada is of type ResultAsync<Array<User>, string>
usersInCanada.then((usersResult: Result<Array<User>, string>) => {
if(usersResult.isErr()){
res.status(400).json({
error: usersResult.error
})
}
else{
res.status(200).json({
users: usersResult.value
})
}
})Same idea as map above. Except the applied function must return a Result or ResultAsync.
ResultAsync.andThen always returns a ResultAsync no matter the return type of the applied function.
This is useful for when you need to do a subsequent computation using the inner T value, but that computation might fail.
andThen is really useful as a tool to flatten a ResultAsync<ResultAsync<A, E2>, E1> into a ResultAsync<A, E2> (see example below).
Signature:
type AndThenFunc = (t: T) => ResultAsync<U, E> | Result<U, E>
andThen<U>(f: AndThenFunc): ResultAsync<U, E> { ... }Example
const { validateUser } from 'imaginary-validator'
const { insertUser } from 'imaginary-database'
const { sendNotification } from 'imaginary-service'
// ^ assume validateUser, insertUser and sendNotification have the following signatures:
// validateUser(user: User): Result<User, Error>
// insertUser(user): ResultAsync<User, Error>
// sendNotification(user): ResultAsync<void, Error>
const resAsync = validateUser(user)
.andThen(insertUser)
.andThen(sendNotification)
// resAsync is a ResultAsync<void, Error>
resAsync.then((res: Result<void, Error>) => {
if(res.isErr()){
console.log("Oops, at least one step failed", res.error)
}
else{
console.log("User has been validated, inserted and notified successfully.")
}
})Given 2 functions (one for the Ok variant and one for the Err variant) execute the function that matches the ResultAsync variant.
The difference with Result.match is that it always returns a Promise because of the asynchronous nature of the ResultAsync.
Signature:
match<A>(
okFn: (t: T) => A,
errFn: (e: E) => A
): Promise<A> => { ... }Example:
const { validateUser } from 'imaginary-validator'
const { insertUser } from 'imaginary-database'
// ^ assume validateUser and insertUser have the following signatures:
// validateUser(user: User): Result<User, Error>
// insertUser(user): ResultAsync<User, Error>
// Handle both cases at the end of the chain using match
const resultMessage = await validateUser(user)
.andThen(insertUser)
.match((user: User) => `User ${user.name} has been successfully created`,
(e: Error) => `User could not be created because ${e.message}`)
// resultMessage is a stringDisclaimer: the preferred solution to chaining asynchronous tasks is
ResultAsync.
The following method might be deprecated in the future.
tldr: chain is the .andThen equivalent for Results wrapped inside of a Promise.
Examples can be found in the tests directory
The chain functions allow you to create sequential execution flows for asynchronous tasks in a very elegant way.
If you try to create sequential execution flows for, say 3 or more, async tasks using the asyncMap method, you will end up with nested code (hello callback hell) and a lot of manually unwrapping promises using await.
chain takes care of unwrapping Promises for you.
Chains have short-circuit behaviour:
One of the properties of the chain api (thanks to the way Results work), is that the chain returns early (or short circuits) once any computation returns a Err variant.
All chain functions require that:
- the first argument be a promise with
Resultinside it. - the last argument be a function that returns a promise with
Resultinside it.
All arguments in between the first and the last do not need to be async! You'll see this in the function signatures of chain3, chain4, chain5, etc ...
Here's an example using chain4 (source):
import { ok, chain4 } from 'neverthrow'
// ...
chain4(
sessionManager.getSessionUser(),
({ id }) => getSingleSite(id, siteId),
fetchSiteWithComments,
siteWithComments => Promise.resolve(ok(buildSite(siteWithComments))),
)Signature:
<T1, T2, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>>,
): Promise<Result<T2, E>> => { ... }The above in plain english:
- given a computation
r1 - evaluate
r2with theOkvalue ofr1as r2`'s argument.- If
r1ends up being anErrvalue, then do not evaluater2, and instead return theErr
- If
Signature:
<T1, T2, T3, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>>,
): Promise<Result<T3, E>> => { ... }Same thing as chain, except now you have a middle computation which can be either synchronous or asynchronous.
Signature:
<T1, T2, T3, T4, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>>,
): Promise<Result<T4, E>> => { ... }Same thing as chain, except now you have 2 middle computations; any of which can be either synchronous or asynchronous.
Signature:
<T1, T2, T3, T4, T5, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>>,
): Promise<Result<T5, E>> => { ... }Same thing as chain, except now you have 3 middle computations; any of which can be either synchronous or asynchronous.
Signature:
<T1, T2, T3, T4, T5, T6, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>>,
): Promise<Result<T6, E>> => {Same thing as chain, except now you have 4 middle computations; any of which can be either synchronous or asynchronous.
Signature:
<T1, T2, T3, T4, T5, T6, T7, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
r7: (v: T6) => Promise<Result<T7, E>>,
): Promise<Result<T7, E>> => { ... }Same thing as chain, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.
Signature:
<T1, T2, T3, T4, T5, T6, T7, T8, E>(
r1: Promise<Result<T1, E>>,
r2: (v: T1) => Promise<Result<T2, E>> | Result<T2, E>,
r3: (v: T2) => Promise<Result<T3, E>> | Result<T3, E>,
r4: (v: T3) => Promise<Result<T4, E>> | Result<T4, E>,
r5: (v: T4) => Promise<Result<T5, E>> | Result<T5, E>,
r6: (v: T5) => Promise<Result<T6, E>> | Result<T6, E>,
r7: (v: T6) => Promise<Result<T7, E>> | Result<T7, E>,
r8: (v: T7) => Promise<Result<T8, E>>,
): Promise<Result<T8, E>> => { ... }Same thing as chain, except now you have 5 middle computations; any of which can be either synchronous or asynchronous.
--
incomplete documenation ... Examples to come soon
- axios
- knex
Although the package is called neverthrow, please don't take this literally. I am simply encouraging the developer to think a bit more about the ergonomics and usage of whatever software they are writing.
Throwing and catching is very similar to using goto statements - in other words; it makes reasoning about your programs harder. Secondly, by using throw you make the assumption that the caller of your function is implementing catch. This is a known source of errors. Example: One dev throws and another dev uses the function without prior knowledge that the function will throw. Thus, and edge case has been left unhandled and now you have unhappy users, bosses, cats, etc.
With all that said, there are definitely good use cases for throwing in your program. But much less than you might think.