Skip to content

How to use this VAE on LCM #8

@alfredplpl

Description

@alfredplpl

Thanks to open your work.
Btw, I ran the code:

from diffusers import DiffusionPipeline,StableDiffusionPipeline
import torch
from consistencydecoder import ConsistencyDecoder, save_image, load_image

pipe = DiffusionPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", custom_pipeline="latent_consistency_txt2img", custom_revision="main", revision="fb9c5d")

decoder_consistency = ConsistencyDecoder(device="cuda:0") # Model size: 2.49 GB

pipe.to(torch_device="cuda", torch_dtype=torch.float32)

prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

# Can be set to 1~50 steps. LCM support fast inference even <= 4 steps. Recommend: 1~8 steps.
num_inference_steps = 4

latent = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=8.0, output_type="latent").images[0]

latent=latent.unsqueeze(0).to("cuda:0")

sample_consistency = decoder_consistency(latent)
save_image(sample_consistency, "con.png")

I got the image:

con

What is wrong?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions