This Python script leverages Selenium and NLTK to analyze the sentiment of recent chat messages on a Twitch stream.
-
Retrieves Chat Messages:
- Uses Selenium to automate the process of loading the specified Twitch channel's chat.
- Extracts the latest chat messages from the chat log.
-
Calculates Sentiment Scores:
- Employs NLTK's SentimentIntensityAnalyzer to assign a sentiment score (positive, negative, neutral) to each chat message.
-
Determines Average Sentiment:
- Calculates the overall average sentiment of the collected chat messages.
- Prerequisites:
- Python 3 (https://www.python.org/)
- Selenium (
pip install selenium) - NLTK (
pip install nltk) - A WebDriver for your browser (e.g., ChromeDriver for Chrome: https://chromedriver.chromium.org/)
-
Customize the Code:
- Replace
/usr/bin/chromedriverwith the correct path to your WebDriver. - Change
"https://twitch.tv/summit1g"to the desired Twitch channel URL.
- Replace
-
Run the Script:
python main.py
Using React to Update a Python Lexicon Database
Conceptual Overview
-
React Frontend: Design a user interface for lexicon management.
- Input fields to add new words or phrases to the lexicon.
- Editing areas to modify existing entries.
- A display component to show the current lexicon contents.
- Buttons to trigger actions (add, edit, delete)
-
Python Backend (API): Create a REST API using frameworks like Flask or Django to handle database interactions.
- Endpoints:
GET /lexicon: Fetches the entire lexicon.POST /lexicon: Adds a new entry.PUT /lexicon/<id>: Updates an existing entry (where<id>is the entry's identifier).DELETE /lexicon/<id>: Deletes an entry.
- Endpoints:
-
Database: Choose a database suitable for storing your lexicon.
- SQLite