Skip to content

ValueError: You need to provide a valid (batch_size)x3x4 projection matrix #41

@marcomameli1992

Description

@marcomameli1992

After the solved installation problem with the use of a docker image based on CUDA 10 and some changes on the cpp code of the neural renderer the code start, but when I try to use the entrypoint_predict I receive the next error:

python3.8 entrypoint_predict.py --options ./experiments/default/resnet.yml --checkpoint ./datasets/data/pretrained/resnet50-19c8e357.pth --folder ./datasets/imgs --name test1
=> creating logs/test1
=> creating checkpoints/test1/default_resnet_0505062026
=> creating summary/test1/default_resnet_0505062026
{'checkpoint': './datasets/data/pretrained/resnet50-19c8e357.pth',
 'checkpoint_dir': 'checkpoints/test1/default_resnet_0505062026',
 'dataset': {'camera_c': array([111.5, 111.5]),
             'camera_f': array([248., 248.]),
             'mesh_pos': array([ 0. ,  0. , -0.8]),
             'name': 'shapenet_demo',
             'normalization': True,
             'num_classes': 13,
             'predict': {'folder': './datasets/imgs'},
             'shapenet': {'num_points': 9000,
                          'resize_with_constant_border': False},
             'subset_eval': 'test_tf',
             'subset_train': 'train_tf'},
 'log_dir': 'logs/test1',
 'log_level': 'info',
 'loss': {'weights': {'chamfer': array([1., 1., 1.]),
                      'chamfer_opposite': 0.55,
                      'constant': 1.0,
                      'edge': 0.1,
                      'laplace': 0.5,
                      'move': 0.033,
                      'normal': 0.00016,
                      'reconst': 0.0}},
 'model': {'align_with_tensorflow': False,
           'backbone': 'resnet50',
           'coord_dim': 3,
           'gconv_activation': True,
           'hidden_dim': 192,
           'last_hidden_dim': 192,
           'name': 'pixel2mesh',
           'z_threshold': 0},
 'name': 'test1',
 'num_gpus': 8,
 'num_workers': 16,
 'optim': {'adam_beta1': 0.9,
           'lr': 0.0001,
           'lr_factor': 0.3,
           'lr_step': array([30, 70, 90]),
           'name': 'adam',
           'sgd_momentum': 0.9,
           'wd': 1e-06},
 'pin_memory': True,
 'summary_dir': 'summary/test1/default_resnet_0505062026',
 'test': {'batch_size': 8,
          'dataset': array([], dtype=float64),
          'shuffle': False,
          'summary_steps': 50,
          'weighted_mean': False},
 'train': {'batch_size': 8,
           'checkpoint_steps': 10000,
           'num_epochs': 110,
           'shuffle': True,
           'summary_steps': 50,
           'test_epochs': 1,
           'use_augmentation': True},
 'version': 'default_resnet_0505062026'}
=> creating summary writer
Using GPUs: [0, 1, 2, 3, 4, 5, 6, 7]
Loading datasets: shapenet_demo
Running model initialization...
Traceback (most recent call last):
  File "entrypoint_predict.py", line 39, in <module>
    main()
  File "entrypoint_predict.py", line 34, in main
    predictor = Predictor(options, logger, writer)
  File "/home/vrai/Pixel2Mesh/functions/predictor.py", line 20, in __init__
    super().__init__(options, logger, writer, training=False, shared_model=shared_model)
  File "/home/vrai/Pixel2Mesh/functions/base.py", line 55, in __init__
    self.init_fn(shared_model=shared_model)
  File "/home/vrai/Pixel2Mesh/functions/predictor.py", line 42, in init_fn
    self.renderer = MeshRenderer(self.options.dataset.camera_f, self.options.dataset.camera_c,
  File "/home/vrai/Pixel2Mesh/utils/vis/renderer.py", line 36, in __init__
    self.renderer = nr.Renderer(camera_mode='projection',
  File "/usr/local/lib/python3.8/dist-packages/neural_renderer-1.1.3-py3.8-linux-x86_64.egg/neural_renderer/renderer.py", line 34, in __init__
    raise ValueError('You need to provide a valid (batch_size)x3x4 projection matrix')
ValueError: You need to provide a valid (batch_size)x3x4 projection matrix

I use the default configuration in the default folder and I also tested with the configuration in the baseline folder, after the changes to the baseline from 8 GPUs to 1 (I know that it is not enough but for testing, I use my personal PC)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions