[Neurips'24] PyTorch Implementation of "MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction". (https://arxiv.org/abs/2402.12238)
conda create -n mgf python=3.9
conda activate mgf
pip install -r requirements.txtpython src/data/TP/process_data.py
python src/test.py --scene {scene_name}- scene_name = eth/hotel/univ/zara1/zara2/sdd
| ETH | HOTEL | UNIV | ZARA1 | ZARA2 | SDD | |
|---|---|---|---|---|---|---|
| ADE | 0.40 | 0.13 | 0.21 | 0.17 | 0.14 | 7.74 |
| FDE | 0.59 | 0.20 | 0.39 | 0.29 | 0.24 | 12.17 |
python src/train.py --model_name {model_name} --scene {scene_name} --gpu {gpu_id}- scene_name = eth/hotel/univ/zara1/zara2/sdd
- Note: The real parameters are set in the config file, not in args.
- The basic code framework is based on FlowChain.
