Skip to content

对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结论。

Notifications You must be signed in to change notification settings

journeyH/debtDefaultResearch

Repository files navigation

debtDefaultResearch

对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结论。

About

对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结论。

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages