Implementation of the SDA using theano library.
To run the SDA for the horse racing dataset please follow the guide from below. You can also edit the test_sda.py if you want to tune the parameters.
- ./setup.py
- ./test_sda.py
- data/training.csv - the horse racing dataset for training
- data/testing.csv - the horse racing dataset for testing
- setupy.py - a script preprocessing the data/testing and data/training into a
- format to be used for machine learning
- test_logistic_regression.py - a script for testing logistic regression
- test_denoising_autoencoder.py - a script for testing denoising autoencoder
- test_sda.py - a script for testing stacked denoising autoencoder
- deeplearn/classifers.py - classifiers implementation
- deeplearn/metrics.py - confusion matrix
- deeplear/datasets.py - utils for generating datasets