Skip to content

AI-powered stock prediction dashboard with transformer models

Notifications You must be signed in to change notification settings

jedarden/transformers-predictions

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

23 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ€– Transformers Predictions

A comprehensive web dashboard for visualizing OHLCV (Open, High, Low, Close, Volume) stock prediction data with Monte Carlo analysis powered by transformer models.

🌐 Live Demo

GitHub Pages: https://jedarden.github.io/transformers-predictions

✨ Key Features

πŸ” Real-Time Search

  • Instant search: Type any ticker symbol for immediate results
  • Auto-complete: Results appear as you type (300ms debounce)
  • Smart validation: Shows "[Ticker] not found" for invalid symbols
  • No button required: Search happens automatically

πŸ“ˆ Professional Candlestick Charts

  • 🟒 Green candlesticks: Bullish days (close β‰₯ open)
  • πŸ”΄ Red candlesticks: Bearish days (close < open)
  • High-Low wicks: Complete daily trading range visualization
  • Historical context: 50 days of market data

🎯 Advanced Prediction Visualization

  • Monte Carlo analysis: 10 simulation paths with uncertainty ranges
  • Confidence bands: Statistical prediction intervals (10th-90th, 25th-75th percentiles)
  • Actual vs predicted: Real market data overlay for validation
  • Interactive controls: Toggle different chart elements

πŸ“Š Comprehensive Analytics

  • Accuracy metrics: MAPE, RMSE, MAE for all OHLCV components
  • Performance scores: Overall model rating (0-100 scale)
  • Quality indicators: Excellent, Good, Fair, Poor classifications
  • Technical analysis: Support/resistance levels, volatility patterns

πŸš€ Available Sample Tickers

Try these examples:

  • AAPL - Apple Inc. (Excellent prediction quality - 85.1 score)
  • TSLA - Tesla Inc. (High-volatility analysis)
  • MSFT - Microsoft Corporation (Large-cap stability)
  • GOOGL - Alphabet Inc. (Tech sector analysis)
  • ZEPP - Zepp Health Corporation (Fair prediction quality - 41.7 score)

πŸ› οΈ Technical Implementation

Frontend Stack

  • Pure JavaScript: No frameworks, fast loading
  • Chart.js: Professional financial chart rendering
  • CSS3: Modern responsive design with gradients
  • HTML5: Semantic structure optimized for accessibility

GitHub Pages Compatible

  • Static hosting: No server required, pure client-side
  • Direct JSON loading: Fetches prediction files directly
  • CDN libraries: Chart.js and date adapters from CDN
  • Responsive design: Mobile-friendly layout

Data Structure

Each ticker includes:

  • 50 days historical OHLCV data
  • 10 Monte Carlo simulation paths (5 days each)
  • Statistical summaries with percentiles and confidence intervals
  • Performance metrics with accuracy scores
  • Technical indicators (support/resistance, volatility)

πŸ“± User Experience Features

Real-Time Interaction

  • Type-to-search: Results appear as you type ticker symbols
  • Instant feedback: Immediate validation and error handling
  • Smooth animations: Loading states and transitions
  • Touch-friendly: Optimized for mobile and tablet use

Chart Interactivity

  • Zoom & Pan: Full chart navigation capabilities
  • Rich tooltips: Complete OHLCV data on hover
  • Toggle controls: Show/hide prediction bands, simulations, actual data
  • Professional styling: Financial-grade visualization

Responsive Design

  • Mobile-first: Designed for all screen sizes
  • Adaptive layout: Cards and grids adjust to screen width
  • Touch interactions: Mobile-optimized controls
  • Fast loading: Optimized assets and minimal dependencies

πŸ”§ Development Setup

Local Development

# Clone the repository
git clone https://github.com/jedarden/transformers-predictions.git
cd transformers-predictions

# Serve locally (optional - can open index.html directly)
python -m http.server 8000
# or
npx serve .

# Open browser
open http://localhost:8000

Adding More Tickers

To add additional ticker data:

  1. Copy JSON files to the data/ directory
  2. Ensure files follow the naming convention: {TICKER}_ohlcv_prediction.json
  3. Files will be automatically available for search

πŸ“Š Data Format

The dashboard expects JSON files with this structure:

{
  "ticker_info": {
    "symbol": "AAPL",
    "model_type": "complete-ohlcv-monte-carlo",
    "chart_compatibility": "candlestick_ready"
  },
  "chart_data": {
    "historical_candlesticks": [...],
    "actual_candlesticks": [...],
    "monte_carlo_simulations": [...],
    "predicted_ohlcv_summary": {...}
  },
  "data": {
    "prediction_metrics": {...},
    "ohlcv_analysis": {...}
  }
}

πŸš€ Deployment to GitHub Pages

Automatic Deployment

  1. Push changes to the main branch
  2. GitHub Actions automatically deploys to GitHub Pages
  3. Live site updates within 2-3 minutes

Manual Setup

  1. Fork or clone this repository
  2. Enable GitHub Pages in repository settings
  3. Select "GitHub Actions" as the source
  4. Push to main branch to trigger deployment

🎯 Performance Features

  • Fast loading: Minimal dependencies, optimized assets
  • Instant search: Real-time ticker lookup with debouncing
  • Smooth interactions: Hardware-accelerated animations
  • Mobile optimized: Touch-friendly interface design

πŸ“ˆ Financial Analysis Features

  • Candlestick patterns: Traditional financial chart visualization
  • Volume analysis: Trading volume patterns and statistics
  • Volatility indicators: Market volatility and risk metrics
  • Technical levels: Support and resistance price levels
  • Prediction accuracy: Model performance validation with actual data

πŸ”— Links


Built with ❀️ for financial data visualization and stock market prediction analysis.

About

AI-powered stock prediction dashboard with transformer models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •