Pytorch implementation for the paper: Breaking Isolation: Multimodal Graph Fusion for Multimedia Recommendation by Edge-wise Modulation, ACM Mulimedia 2022.
The code has been tested running under Python 3.8.5. The required packages are as follows:
- Pytorch 1.7.1
- CUDA 11.3
- torch-geometric 1.7.2
Download data following the instructions here.
- Movielens dataset (EgoGCN-hard)
python main.py --l_r=0.0002 --weight_decay=0.0001 --weight_mode=GCN --num_routing=3 --data_path=movielens --batch_size 2048 --alpha_threshold='>0.4' --reattn=True --central=central_item
- Tiktok dataset (EgoGCN-hard)
python main.py --l_r=0.0003 --weight_decay=0.001 --weight_mode=GCN --num_routing=1 --data_path=Tiktok --batch_size 1024 --alpha_threshold '>0.6' --reattn=True --central=central_item
For EgoGCN-soft, simply setting --alpha_threshold '=0'
For other variants in the paper, for instance, EgoGCN-NA,
python main.py --l_r=0.0002 --weight_decay=0.0001 --weight_mode=GCN --num_routing=3 --data_path=movielens --batch_size 2048 --alpha_threshold='>99' --reattn=True --central=central_item --NA
python main.py --l_r=0.0003 --weight_decay=0.001 --weight_mode=GCN --num_routing=1 --data_path=Tiktok --batch_size 1024 --alpha_threshold '>99' --reattn=True --central=central_item --NA
If you found this code useful, please cite the following paper:
@inproceedings{DBLP:conf/mm/ChenWWZS22,
author = {Feiyu Chen and
Junjie Wang and
Yinwei Wei and
Hai{-}Tao Zheng and
Jie Shao},
title = {Breaking Isolation: Multimodal Graph Fusion for Multimedia Recommendation
by Edge-wise Modulation},
booktitle = {{MM} '22: The 30th {ACM} International Conference on Multimedia, Lisboa,
Portugal, October 10 - 14, 2022},
pages = {385--394},
publisher = {{ACM}},
year = {2022},
}