Skip to content

Code for "Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion"(ECCV2022)

License

Notifications You must be signed in to change notification settings

erfect2020/DecompositionForFusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

103 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fusion from Decomposition


This repository is an official implementation of Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion (ECCV 2022).

Prerequisites


  • Linux
  • Python 3
  • NVIDIA GPU + CUDA cuDNN
  • PyTorch 1.9
  • torchvision 0.8
  • Pillow 8.1
  • Opencv 4.4

Getting Started


Installation


  • Install python libraries and requests.
  • Clone this repo:
git clone https://github.com/erfect2020/DecompositionForFusion.git
cd DecompositionForFusion

Start run


  1. Download COCO: https://cocodataset.org/
  2. Put your training images into any floder and modify the `option/train/SelfTrained_SDataset.yaml' to retarget the path.
  3. Train DeFusion
    python selftrain.py --opt options/train/SelfTrained_SDataset.yaml

Start evaluation


  1. Download test dataset:
    1. Multi-exposure image fusion: MEFB:https://github.com/xingchenzhang/MEFB, SICE:https://github.com/csjcai/SICE.
    2. Multi-focus image fusion: Real-MFF:https://githubmemory.com/repo/Zancelot/Real-MFF, Dataset:https://github.com/xingchenzhang/MFIFB.
    3. Visible-infrared image fusion: RoadScene:https://github.com/jiayi-ma/RoadScene, TNO:https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029.
  2. Modify test.py to select the data preprocess files for different tasks:
  3. (Option) Our pretrained model is avaliable at Google Drive
  4. Test DeFusion
    1. Test multi-exposure image fusion task on MEFB or SICE
    python test.py --opt options/test/MEF_Test_Dataset.yaml or
    python test.py --opt options/test/SMEF_Test_Dataset.yaml
    1. Test multi-focus image fusion task on Real-MFF or Dataset
    python test.py --opt options/test/MFF_Test_Dataset.yaml or
    python test.py --opt options/test/EMFF_Test_Dataset.yaml
    1. Test visible infrared image fusion task on RoadScene or TNO
    python test.py --opt options/test/IVF_Test_Dataset.yaml or
    python test.py --opt options/test/TIVF_Test_Dataset.yaml

License


Distributed under the MIT License. See LICENSE.md for more information.

Citations


If DeFusion helps your research or work, please consider citing DeFusion.

@InProceedings{Liang2022ECCV,
    author    = {Liang, Pengwei and Jiang, Junjun and Liu, Xianming and Ma, Jiayi},
    title     = {Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year      = {2022},
}

About

Code for "Fusion from Decomposition: A Self-Supervised Decomposition Approach for Image Fusion"(ECCV2022)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages