Skip to content
/ ares Public

A production-grade agentic chatbot server built in Rust with multi-provider LLM support, tool calling, RAG, MCP integration, and advanced research capabilities

License

Notifications You must be signed in to change notification settings

dirmacs/ares

Repository files navigation

A.R.E.S - Agentic Retrieval Enhanced Server

Crates.io Documentation License: MIT Rust CI

Ares Logo

A production-grade agentic chatbot server built in Rust with multi-provider LLM support, tool calling, RAG, MCP integration, and advanced research capabilities.

Features

  • πŸ€– Multi-Provider LLM Support: Ollama, OpenAI, LlamaCpp (direct GGUF loading)
  • βš™οΈ TOML Configuration: Declarative configuration with hot-reloading
  • 🎭 Configurable Agents: Define agents via TOON (Token Oriented Object Notation) with custom models, tools, and prompts
  • πŸ”„ Workflow Engine: Declarative workflow execution with agent routing
  • 🏠 Local-First Development: Runs entirely locally with Ollama and SQLite by default
  • πŸ”§ Tool Calling: Type-safe function calling with automatic schema generation
  • 🎯 Per-Agent Tool Filtering: Restrict which tools each agent can access
  • πŸ“‘ Streaming: Real-time streaming responses from all providers
  • πŸ” Authentication: JWT-based auth with Argon2 password hashing
  • πŸ’Ύ Database: Local SQLite (libsql) by default, optional Turso and Qdrant
  • πŸ”Œ MCP Support: Pluggable Model Context Protocol server integration
  • πŸ•ΈοΈ Agent Framework: Multi-agent orchestration with specialized agents
  • πŸ“š RAG: Pluggable knowledge bases with semantic search
  • 🧠 Memory: User personalization and context management
  • πŸ”¬ Deep Research: Multi-step research with parallel subagents
  • 🌐 Web Search: Built-in web search via daedra (no API keys required)
  • πŸ“– OpenAPI: Automatic API documentation generation
  • πŸ§ͺ Testing: Comprehensive unit and integration tests
  • βœ”οΈ Config Validation: Circular reference detection and unused config warnings

Installation

A.R.E.S can be used as a standalone server or as a library in your Rust project.

As a Library

Add to your Cargo.toml:

[dependencies]
ares-server = "0.2"

Basic usage:

use ares::{Provider, LLMClient};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Create an Ollama provider
    let provider = Provider::Ollama {
        base_url: "http://localhost:11434".to_string(),
        model: "llama3.2:3b".to_string(),
    };

    // Create a client and generate a response
    let client = provider.create_client().await?;
    let response = client.generate("Hello, world!").await?;
    println!("{}", response);

    Ok(())
}

As a Binary

# Install from crates.io (basic installation)
cargo install ares-server

# Install with embedded Web UI
cargo install ares-server --features ui

# Initialize a new project (creates ares.toml and config files)
ares-server init

# Run the server
ares-server

CLI Commands

A.R.E.S provides a full-featured CLI with colored output:

# Initialize a new project with all configuration files
ares-server init

# Initialize with custom options
ares-server init --provider openai --port 8080 --host 0.0.0.0

# Initialize with minimal configuration
ares-server init --minimal

# View configuration summary
ares-server config

# Validate configuration
ares-server config --validate

# List all configured agents
ares-server agent list

# Show details for a specific agent
ares-server agent show orchestrator

# Start the server
ares-server

# Start with verbose logging
ares-server --verbose

# Use a custom config file
ares-server --config custom.toml

# Disable colored output
ares-server --no-color init

Init Command Options

Option Description
--force, -f Overwrite existing files
--minimal, -m Create minimal configuration
--no-examples Skip creating TOON example files
--provider <NAME> LLM provider: ollama, openai, or both
--host <ADDR> Server host address (default: 127.0.0.1)
--port <PORT> Server port (default: 3000)

Quick Start (Development)

Prerequisites

1. Clone and Setup

git clone https://github.com/dirmacs/ares.git
cd ares
cp .env.example .env

# Or use just to set up everything:
just setup

2. Start Ollama (Recommended)

# Install a model
ollama pull ministral-3:3b
# Or: just ollama-pull

# Ollama runs automatically as a service, or start manually:
ollama serve

3. Build and Run

# Build with default features (local-db + ollama)
cargo build
# Or: just build

# Run the server
cargo run
# Or: just run

Server runs on http://localhost:3000

Feature Flags

A.R.E.S uses Cargo features for conditional compilation:

LLM Providers

Feature Description Default
ollama Ollama local inference βœ… Yes
openai OpenAI API (and compatible) No
llamacpp Direct GGUF model loading No
llamacpp-cuda LlamaCpp with CUDA No
llamacpp-metal LlamaCpp with Metal (macOS) No
llamacpp-vulkan LlamaCpp with Vulkan No

Database Backends

Feature Description Default
local-db Local SQLite via libsql βœ… Yes
turso Remote Turso database No
qdrant Qdrant vector database No

UI & Documentation

Feature Description Default
ui Embedded Leptos web UI served from backend No
swagger-ui Interactive API documentation at /swagger-ui/ No

Note: swagger-ui was made optional in v0.2.5 to reduce binary size and build time. The feature requires network access during build to download Swagger UI assets.

Feature Bundles

Feature Includes
all-llm ollama + openai + llamacpp
all-db local-db + turso + qdrant
full All optional features (except UI): ollama, openai, llamacpp, turso, qdrant, mcp, swagger-ui
full-ui All optional features + UI
minimal No optional features

Building with Features

# Default (ollama + local-db)
cargo build
# Or: just build

# With OpenAI support
cargo build --features "openai"
# Or: just build-features "openai"

# With direct GGUF loading
cargo build --features "llamacpp"

# With CUDA GPU acceleration
cargo build --features "llamacpp-cuda"

# Full feature set
cargo build --features "full"
# Or: just build-all

# With embedded Web UI
cargo build --features "ui"

# With Swagger UI (interactive API docs)
cargo build --features "swagger-ui"

# Full feature set with UI
cargo build --features "full-ui"

# Release build
cargo build --release
# Or: just build-release

Configuration

A.R.E.S uses a TOML configuration file (ares.toml) for declarative configuration of all components. The server requires this file to start.

Quick Start

# Copy the example config
cp ares.example.toml ares.toml

# Set required environment variables
export JWT_SECRET="your-secret-key-at-least-32-characters"
export API_KEY="your-api-key"

Configuration File (ares.toml)

The configuration file defines providers, models, agents, tools, and workflows:

# Server settings
[server]
host = "127.0.0.1"
port = 3000
log_level = "info"

# Authentication (secrets loaded from env vars)
[auth]
jwt_secret_env = "JWT_SECRET"
api_key_env = "API_KEY"

# Database
[database]
url = "./data/ares.db"

# LLM Providers (define named providers)
[providers.ollama-local]
type = "ollama"
base_url = "http://localhost:11434"
default_model = "ministral-3:3b"

[providers.openai]  # Optional
type = "openai"
api_key_env = "OPENAI_API_KEY"
default_model = "gpt-4"

# Models (reference providers, set parameters)
[models.fast]
provider = "ollama-local"
model = "ministral-3:3b"
temperature = 0.7
max_tokens = 256

[models.balanced]
provider = "ollama-local"
model = "ministral-3:3b"
temperature = 0.7
max_tokens = 512

[models.smart]
provider = "ollama-local"
model = "qwen3-vl:2b"
temperature = 0.3
max_tokens = 1024

# Tools (define available tools)
[tools.calculator]
enabled = true
timeout_secs = 10

[tools.web_search]
enabled = true
timeout_secs = 30

# Agents (reference models and tools)
[agents.router]
model = "fast"
system_prompt = "You route requests to specialized agents..."

[agents.product]
model = "balanced"
tools = ["calculator"]                     # Tool filtering: only calculator
system_prompt = "You are a Product Agent..."

[agents.research]
model = "smart"
tools = ["web_search", "calculator"]       # Multiple tools
system_prompt = "You conduct research..."

# Workflows (define agent routing)
[workflows.default]
entry_agent = "router"
fallback_agent = "product"
max_depth = 5

[workflows.research_flow]
entry_agent = "research"
max_depth = 10

Per-Agent Tool Filtering

Each agent can specify which tools it has access to:

[agents.restricted]
model = "balanced"
tools = ["calculator"]  # Only calculator, no web search

[agents.full_access]
model = "balanced"
tools = ["calculator", "web_search"]  # Both tools

If tools is empty or omitted, the agent has no tool access.

Configuration Validation

The configuration is validated on load with:

  • Reference checking: Models must reference valid providers, agents must reference valid models
  • Circular reference detection: Workflows cannot have circular agent references
  • Environment variables: All referenced env vars must be set

For warnings about unused configuration items (providers, models, tools not referenced by anything), the validate_with_warnings() method is available.

Hot Reloading

Configuration changes are automatically detected and applied without restarting the server. Edit ares.toml and the changes will be picked up within 500ms.

Environment Variables

The following environment variables must be set (referenced by ares.toml):

# Required
JWT_SECRET=your-secret-key-at-least-32-characters
API_KEY=your-api-key

# Optional (for OpenAI provider)
OPENAI_API_KEY=sk-...

Legacy Environment Variables

For backward compatibility, these environment variables can also be used:

# Server
HOST=127.0.0.1
PORT=3000

# Database (local-first)
# Examples: ./data/ares.db | file:./data/ares.db | :memory:
DATABASE_URL=./data/ares.db

# Optional: Turso cloud (set both to enable)
# TURSO_URL=libsql://<your-db>-<your-org>.turso.io
# TURSO_AUTH_TOKEN=...

# LLM Provider - Ollama (default)
OLLAMA_URL=http://localhost:11434

# LLM Provider - OpenAI (optional)
# OPENAI_API_KEY=sk-...
# OPENAI_API_BASE=https://api.openai.com/v1
# OPENAI_MODEL=gpt-4

# LLM Provider - LlamaCpp (optional, highest priority if set)
# LLAMACPP_MODEL_PATH=/path/to/model.gguf

# Authentication
JWT_SECRET=your-secret-key-at-least-32-characters
API_KEY=your-api-key

# Optional: Qdrant for vector search
# QDRANT_URL=http://localhost:6334
# QDRANT_API_KEY=

Provider Priority

When multiple providers are configured, they are selected in this order:

  1. LlamaCpp - If LLAMACPP_MODEL_PATH is set
  2. OpenAI - If OPENAI_API_KEY is set
  3. Ollama - Default fallback (no API key required)

Dynamic Configuration (TOON)

In addition to ares.toml, A.R.E.S supports TOON (Token Oriented Object Notation) files for behavioral configuration with hot-reloading:

config/
β”œβ”€β”€ agents/
β”‚   β”œβ”€β”€ router.toon
β”‚   β”œβ”€β”€ orchestrator.toon
β”‚   └── product.toon
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ fast.toon
β”‚   └── balanced.toon
β”œβ”€β”€ tools/
β”‚   └── calculator.toon
β”œβ”€β”€ workflows/
β”‚   └── default.toon
└── mcps/
    └── filesystem.toon

Example TOON agent config (config/agents/router.toon):

name: router
model: fast
max_tool_iterations: 5
parallel_tools: false
tools[0]:
system_prompt: |
  You are a router agent that directs requests to specialized agents.

Enable TOON configs in ares.toml:

[config]
agents_dir = "config/agents"
models_dir = "config/models"
tools_dir = "config/tools"
workflows_dir = "config/workflows"
mcps_dir = "config/mcps"
hot_reload = true

TOON files are automatically hot-reloaded when changed. See docs/DIR-12-research.md for details.

User-Created Agents API

Users can create custom agents stored in the database with TOON import/export:

# Create a custom agent
curl -X POST http://localhost:3000/api/agents \
  -H "Authorization: Bearer $TOKEN" \
  -H "Content-Type: application/json" \
  -d '{
    "name": "my-agent",
    "model": "balanced",
    "system_prompt": "You are a helpful assistant.",
    "tools": ["calculator"]
  }'

# Export as TOON
curl http://localhost:3000/api/agents/{id}/export \
  -H "Authorization: Bearer $TOKEN"

# Import from TOON
curl -X POST http://localhost:3000/api/agents/import \
  -H "Authorization: Bearer $TOKEN" \
  -H "Content-Type: text/plain" \
  -d 'name: imported-agent
model: fast
system_prompt: |
  You are an imported agent.'

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                            ares.toml (Configuration)                         β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚  β”‚providers β”‚  β”‚ models   β”‚  β”‚ agents   β”‚  β”‚  tools   β”‚  β”‚workflows β”‚     β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚ Hot Reload
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         AresConfigManager                                    β”‚
β”‚                    (Thread-safe config access)                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
       β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
       β”‚                       β”‚                           β”‚
β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”         β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”            β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”
β”‚  Provider   β”‚         β”‚    Agent    β”‚            β”‚    Tool     β”‚
β”‚  Registry   β”‚         β”‚  Registry   β”‚            β”‚  Registry   β”‚
β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜         β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜            β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚                       β”‚                          β”‚
       β”‚                β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”                   β”‚
       β”‚                β”‚Configurable β”‚β—„β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β”‚                β”‚   Agent     β”‚  (filtered tools)
       β”‚                β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜
       β”‚                       β”‚
β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚      LLM Clients             β”‚                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”      β”‚                                               β”‚
β”‚  β”‚Ollama  β”‚ β”‚OpenAI  β”‚      β”‚                                               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β”‚                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”                 β”‚                                               β”‚
β”‚  β”‚LlamaCppβ”‚                 β”‚                                               β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜                 β”‚                                               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                         Workflow Engine                                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    execute_workflow()    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                  β”‚
β”‚  β”‚  Workflow   │─────────────────────────▢│  Agent      β”‚                  β”‚
β”‚  β”‚  Config     β”‚                          β”‚  Execution  β”‚                  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                          β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                              β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚                       β”‚                   β”‚
β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”
β”‚  API Layer    β”‚     β”‚ Tool Calls   β”‚    β”‚  Knowledge  β”‚
β”‚  (Axum)       β”‚     β”‚              β”‚    β”‚    Bases    β”‚
β”‚ /api/chat     β”‚     β”‚ - Calculator β”‚    β”‚  - SQLite   β”‚
β”‚ /api/research β”‚     β”‚ - Web Search β”‚    β”‚  - Qdrant   β”‚
β”‚ /api/workflowsβ”‚     β”‚              β”‚    β”‚             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components

  • AresConfigManager: Thread-safe configuration management with hot-reloading
  • ProviderRegistry: Creates LLM clients based on model configuration
  • AgentRegistry: Creates ConfigurableAgents from TOML configuration
  • ToolRegistry: Manages available tools and their configurations
  • ConfigurableAgent: Generic agent implementation that uses config for behavior
  • WorkflowEngine: Executes declarative workflows defined in TOML

API Documentation

Interactive Swagger UI available at: http://localhost:3000/swagger-ui/

Note: Swagger UI requires the swagger-ui feature to be enabled at build time:

cargo build --features "swagger-ui"
# Or use the full bundle:
cargo build --features "full"

Authentication

Register

curl -X POST http://localhost:3000/api/auth/register \
  -H "Content-Type: application/json" \
  -d '{
    "email": "user@example.com",
    "password": "secure_password",
    "name": "John Doe"
  }'

Login

curl -X POST http://localhost:3000/api/auth/login \
  -H "Content-Type: application/json" \
  -d '{
    "email": "user@example.com",
    "password": "secure_password"
  }'

Response:

{
  "access_token": "eyJ...",
  "refresh_token": "eyJ...",
  "expires_in": 900
}

Chat

curl -X POST http://localhost:3000/api/chat \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "message": "What products do we have?",
    "agent_type": "product"
  }'

Deep Research

curl -X POST http://localhost:3000/api/research \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "Analyze market trends in renewable energy",
    "depth": 3,
    "max_iterations": 5
  }'

Workflows

Workflows enable multi-agent orchestration. Define workflows in ares.toml:

[workflows.default]
entry_agent = "router"           # Starting agent
fallback_agent = "orchestrator"  # Used if routing fails
max_depth = 5                    # Maximum agent chain depth
max_iterations = 10              # Maximum total iterations

List Available Workflows

curl http://localhost:3000/api/workflows \
  -H "Authorization: Bearer <access_token>"

Response:

["default", "research"]

Execute a Workflow

curl -X POST http://localhost:3000/api/workflows/default \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are our Q4 product sales figures?"
  }'

Response:

{
  "final_response": "Based on the Q4 data, our product sales were...",
  "steps_executed": 3,
  "agents_used": ["router", "sales", "product"],
  "reasoning_path": [
    {
      "agent_name": "router",
      "input": "What are our Q4 product sales figures?",
      "output": "sales",
      "timestamp": 1702500000,
      "duration_ms": 150
    },
    {
      "agent_name": "sales",
      "input": "What are our Q4 product sales figures?",
      "output": "For Q4 sales data, I'll need to check...",
      "timestamp": 1702500001,
      "duration_ms": 800
    },
    {
      "agent_name": "product",
      "input": "What are our Q4 product sales figures?",
      "output": "Based on the Q4 data, our product sales were...",
      "timestamp": 1702500002,
      "duration_ms": 650
    }
  ]
}

Workflow with Context

curl -X POST http://localhost:3000/api/workflows/default \
  -H "Authorization: Bearer <access_token>" \
  -H "Content-Type: application/json" \
  -d '{
    "query": "What are the sales figures?",
    "context": {
      "department": "electronics",
      "quarter": "Q4"
    }
  }'

Tool Calling

A.R.E.S supports tool calling with Ollama models that support function calling (ministral-3:3b+, mistral, etc.):

Built-in Tools

  • calculator: Basic arithmetic operations
  • web_search: Web search via DuckDuckGo (no API key required)

Tool Calling Example

use ares::llm::{OllamaClient, OllamaToolCoordinator};
use ares::tools::registry::ToolRegistry;
use ares::tools::{Calculator, WebSearch};

// Set up tools
let mut registry = ToolRegistry::new();
registry.register

## Testing

A.R.E.S has comprehensive test coverage with both mocked and live tests.

### Unit & Integration Tests (Mocked)

```bash
# Run all tests (no external services required)
cargo test
# Or: just test

# Run with verbose output
cargo test -- --nocapture
# Or: just test-verbose

Live Ollama Tests

Tests that connect to a real Ollama instance are available but ignored by default.

Prerequisites

  • Running Ollama server at http://localhost:11434
  • A model installed (e.g., ollama pull ministral-3:3b)

Running Live Tests

# Set the environment variable and run ignored tests
OLLAMA_LIVE_TESTS=1 cargo test --test ollama_live_tests -- --ignored
# Or: just test-ignored

# All tests (normal + ignored)
just test-all

# With verbose output
just test-all-verbose

# With custom Ollama URL or model
OLLAMA_URL=http://192.168.1.100:11434 OLLAMA_MODEL=mistral OLLAMA_LIVE_TESTS=1 \
  cargo test --test ollama_live_tests -- --ignored

Or add OLLAMA_LIVE_TESTS=1 to your .env file.

API Tests (Hurl)

End-to-end API tests using Hurl:

# Install Hurl
brew install hurl  # macOS

# Run API tests (server must be running)
just hurl

# Run with verbose output
just hurl-verbose

# Run specific test group
just hurl-health
just hurl-auth
just hurl-chat

See CONTRIBUTING.md for more testing details.

Common Commands (just)

A.R.E.S uses just as a command runner. Run just --list to see all available commands:

# Show all commands
just --list

# Build & Run
just build          # Build (debug)
just build-release  # Build (release)
just build-ui       # Build with embedded UI
just run            # Run server
just run-ui         # Run with embedded UI
just run-debug      # Run with debug logging

# CLI Commands
just init           # Initialize project (ares-server init)
just init-openai    # Initialize with OpenAI provider
just config         # Show configuration summary
just agents         # List all agents
just agent <name>   # Show agent details

# Testing
just test           # Run tests
just test-verbose   # Run tests with output
just test-ignored   # Run live Ollama tests
just test-all       # Run all tests
just hurl           # Run API tests

# Code Quality
just lint           # Run clippy
just fmt            # Format code
just quality        # Run all quality checks

# Docker
just docker-up      # Start dev services
just docker-down    # Stop services
just docker-logs    # View logs

# UI Development
just ui-setup       # Install UI dependencies
just ui-dev         # Run UI dev server
just ui-build       # Build UI for production
just dev            # Run backend + UI together

# Ollama
just ollama-pull    # Pull default model
just ollama-status  # Check if running

# Info
just info           # Show project info
just status         # Show environment status

Troubleshooting

Configuration File Not Found

# Error: Configuration file 'ares.toml' not found!

# Solution: Initialize a new project
ares-server init

Port Already in Use

# Error: Address already in use (os error 48)

# Find the process using port 3000
lsof -i :3000          # Linux/macOS
netstat -ano | findstr :3000  # Windows

# Kill the process
kill -9 <PID>          # Linux/macOS
taskkill /PID <PID> /F # Windows

Ollama Connection Failed

# Check if Ollama is running
curl http://localhost:11434/api/tags

# Start Ollama
ollama serve

# Or start via Docker
just docker-services

Missing Environment Variables

# Error: MissingEnvVar("JWT_SECRET")

# Solution: Set up environment variables
cp .env.example .env
# Edit .env and set JWT_SECRET (min 32 characters) and API_KEY

UI Build Errors (Node.js runtime required)

# Error: npx: command not found

# Solution: Install a Node.js runtime
# Option 1: Install Bun (recommended)
curl -fsSL https://bun.sh/install | bash

# Option 2: Install Node.js
brew install node  # macOS
# or download from https://nodejs.org

WASM Build Errors

# Error: target `wasm32-unknown-unknown` not found

# Solution: Add the WASM target
rustup target add wasm32-unknown-unknown

# Install trunk
cargo install trunk --locked

Requirements

Minimum Requirements

  • Rust: 1.91 or later
  • Operating System: Linux, macOS, or Windows
  • Memory: 2GB RAM (4GB+ recommended for larger models)

Optional Requirements

  • Ollama: For local LLM inference (recommended)
  • Node.js runtime: Bun, npm, or Deno (required for UI development)
  • Docker: For containerized deployment
  • GPU: NVIDIA (CUDA) or Apple Silicon (Metal) for accelerated inference

Security Considerations

  • JWT_SECRET: Must be at least 32 characters. Generate with: openssl rand -base64 32
  • API_KEY: Should be unique per deployment
  • Environment Variables: Never commit .env files to version control
  • HTTPS: Use HTTPS in production (configure via reverse proxy)
  • Rate Limiting: Consider adding rate limiting for production deployments

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

Quick Contribution Guide

# 1. Fork and clone the repository
git clone https://github.com/YOUR_USERNAME/ares.git
cd ares

# 2. Create a feature branch
git checkout -b feature/my-feature

# 3. Make your changes and run tests
cargo fmt
cargo clippy
cargo test

# 4. Commit and push
git commit -m "feat: add my feature"
git push origin feature/my-feature

# 5. Open a Pull Request

Development Setup

# Install development dependencies
just setup

# Run pre-commit checks before pushing
just pre-commit

Changelog

See CHANGELOG.md for a list of changes in each version.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments

Support


Made with ❀️ by Dirmacs