##xGRAPH 1.0 Final Fertigstellung am 17.3.2013
Berechnung und Darstellung von Teilbereichen der Graphentheorie.
###Programminhalt:
- Adjazenzmatrix
- Graphische Darstellung
- Wegmatrix
- Distanzmatrix
- Exzentrizitäten
- Radius
- Durchmesser
- Zentrum
- Komponenten
- Artikulationen
- Brücken
- Bäume
- Wald
Adjazenzmatrix: Matrix zur Eingabe von ungerichteten Kanten, welche zur weiteren Berechnung herangezogen werden. Die Diagonale ist auf 0 gesetzt und somit sind Knoten mit Schlingen nicht möglich.
Graphische Darstellung: Mittels der JUNG2-Java-Bibliothek wird der in der Adjazenzmatrix eingegebene Graph visualisiert.
Wegmatrix: Enthält als Werte nur 0 oder 1 und besagt, ob es einen Weg von einem beliebigen Knoten x zu einem beliebigen Knoten y gibt.
Distanzmatrix: Liefert die Information darüber, in wievielen Schritten ein beliebiger Knoten x zu einem beliebigen Knoten y erreicht werden kann.
Exzentrizitäten: Ist der jeweils größte Wert eines Knoten in der Distanzmatrix und besagt, in wievielen Schritten man vom jeweiligen Knoten maximal braucht um zu einem anderen Knoten zu gelangen.
Radius: Ist die kleinste Exzentrizität.
Durchmesser: Ist die größte Exzentrizität.
Zentrum: Sind jene Knoten, welche die kleinste Exzentrizität aufweisen.
Komponenten: Eine Komponente ist ein Teilgraph. Diese werden mit Hilfe der Wegmatrix berechnet.
Artikulationen: Sind Knoten, wo bei Wegnahme eines solchen Knotens der Graph in mehr Komponenten zerfällt als er vorher Komponenten hatte.
Brücken: Sind Kanten, wo bei Wegnahme einer solchen Kante der Graph in mehr Komponenten zerfällt als er vorher Komponenten hatte.
Bäume: Ein Graph ist dann ein Baum wenn er um einen Knoten mehr als Kanten hat und der Graph zusammenhängend ist.
Wald: Ein Graph ist dann ein Wald, wenn er nicht zusammenhängend ist und die Anzahl der Kanten gleich der Anzahl der Knoten minus der Anzahl der Komponenten ist.