Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 28, 2025

📄 36% (0.36x) speedup for NamespaceResourceAsyncio.list_paginated in pinecone/db_data/resources/asyncio/namespace_asyncio.py

⏱️ Runtime : 8.87 microseconds 6.54 microseconds (best of 5 runs)

📝 Explanation and details

The optimization replaces a function call to parse_non_empty_args with direct conditional assignments, achieving a 35% runtime improvement and 15.6% throughput increase.

Key Change:

  • Original: Creates a list of tuples [("limit", limit), ("pagination_token", pagination_token)] and passes it to parse_non_empty_args, which iterates through the list filtering non-None values
  • Optimized: Directly checks each parameter with if param is not None and assigns to the dictionary inline

Why This Works:
The original approach has multiple layers of overhead:

  1. Tuple creation: Packing parameters into 2-tuples
  2. List creation: Building a list container for the tuples
  3. Function call overhead: Invoking parse_non_empty_args
  4. Iterator overhead: The function iterates through the list and unpacks each tuple

The optimized version eliminates all this overhead by doing direct None checks and dictionary assignments. For just 2 parameters, the direct approach is significantly more efficient than the generic utility function.

Performance Impact:

  • Line profiler shows the original parse_non_empty_args call took 86.9% of execution time (881,456ns out of 1,014,230ns total)
  • The optimized version spreads this work across simple conditional assignments, reducing total function time by ~40%

This optimization is particularly effective for cases with few optional parameters (like this 2-parameter scenario) where the overhead of the generic parsing utility outweighs its benefits.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 6 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
import asyncio  # used to run async functions
from typing import Any, Dict, List, Optional, Tuple

import pytest  # used for our unit tests
from pinecone.db_data.resources.asyncio.namespace_asyncio import \
    NamespaceResourceAsyncio

# --- Mock dependencies for AsyncioNamespaceOperationsApi & ListNamespacesResponse ---

class Pagination:
    def __init__(self, next_token=None):
        self.next = next_token

class ListNamespacesResponse:
    def __init__(self, namespaces: List[str], pagination: Pagination):
        self.namespaces = namespaces
        self.pagination = pagination

class AsyncioNamespaceOperationsApi:
    def __init__(self, api_client):
        self.api_client = api_client

    async def list_namespaces_operation(self, **args):
        # Simulate paginated response
        # For test purposes, assume a static set of namespaces
        all_namespaces = [f"namespace_{i}" for i in range(1, 101)]
        limit = args.get("limit", 10)
        pagination_token = args.get("pagination_token")
        start = int(pagination_token) if pagination_token is not None else 0
        end = start + limit
        namespaces = all_namespaces[start:end]
        next_token = str(end) if end < len(all_namespaces) else None
        return ListNamespacesResponse(namespaces, Pagination(next_token))

# pinecone/utils/require_kwargs.py
def require_kwargs(func):
    # Dummy decorator for test purposes
    return func
from pinecone.db_data.resources.asyncio.namespace_asyncio import \
    NamespaceResourceAsyncio

# --- Unit Tests ---

@pytest.mark.asyncio












#------------------------------------------------
import asyncio  # used to run async functions
from typing import Any, Dict, List, Optional, Tuple

import pytest  # used for our unit tests
from pinecone.db_data.resources.asyncio.namespace_asyncio import \
    NamespaceResourceAsyncio


# pinecone/db_data/resources/asyncio/namespace_asyncio.py
# Minimal stub for ListNamespacesResponse and AsyncioNamespaceOperationsApi for testing
class Pagination:
    def __init__(self, next_token=None):
        self.next = next_token

class ListNamespacesResponse:
    def __init__(self, namespaces, pagination=None):
        self.namespaces = namespaces
        self.pagination = pagination or Pagination()

class AsyncioNamespaceOperationsApi:
    def __init__(self, api_client):
        self.api_client = api_client
        self._call_count = 0  # for throughput test

    async def list_namespaces_operation(self, **args):
        # Simulate async I/O and deterministic responses for testing
        await asyncio.sleep(0)  # yield control, but don't delay
        self._call_count += 1
        limit = args.get("limit", 10)
        pagination_token = args.get("pagination_token")
        # Simulate a namespace list, with pagination
        all_namespaces = self.api_client.get("namespaces", [])
        if pagination_token:
            try:
                start = int(pagination_token)
            except ValueError:
                raise ValueError("Invalid pagination_token")
        else:
            start = 0
        end = start + (limit if limit is not None else 10)
        next_token = str(end) if end < len(all_namespaces) else None
        return ListNamespacesResponse(
            namespaces=all_namespaces[start:end],
            pagination=Pagination(next_token)
        )

def require_kwargs(func):
    # No-op decorator for testing
    return func
from pinecone.db_data.resources.asyncio.namespace_asyncio import \
    NamespaceResourceAsyncio

# --- Unit tests for list_paginated ---

@pytest.fixture
def api_client_fixture():
    # Simulate an API client with a static list of namespaces
    return {"namespaces": [f"ns_{i}" for i in range(20)]}

@pytest.fixture
def namespace_resource(api_client_fixture):
    return NamespaceResourceAsyncio(api_client_fixture)

# 1. BASIC TEST CASES

@pytest.mark.asyncio
















#------------------------------------------------
from pinecone.db_data.resources.asyncio.namespace_asyncio import NamespaceResourceAsyncio

To edit these changes git checkout codeflash/optimize-NamespaceResourceAsyncio.list_paginated-mh9wgf0y and push.

Codeflash

The optimization replaces a function call to `parse_non_empty_args` with direct conditional assignments, achieving a **35% runtime improvement** and **15.6% throughput increase**.

**Key Change:**
- **Original**: Creates a list of tuples `[("limit", limit), ("pagination_token", pagination_token)]` and passes it to `parse_non_empty_args`, which iterates through the list filtering non-None values
- **Optimized**: Directly checks each parameter with `if param is not None` and assigns to the dictionary inline

**Why This Works:**
The original approach has multiple layers of overhead:
1. **Tuple creation**: Packing parameters into 2-tuples
2. **List creation**: Building a list container for the tuples  
3. **Function call overhead**: Invoking `parse_non_empty_args`
4. **Iterator overhead**: The function iterates through the list and unpacks each tuple

The optimized version eliminates all this overhead by doing direct None checks and dictionary assignments. For just 2 parameters, the direct approach is significantly more efficient than the generic utility function.

**Performance Impact:**
- Line profiler shows the original `parse_non_empty_args` call took 86.9% of execution time (881,456ns out of 1,014,230ns total)
- The optimized version spreads this work across simple conditional assignments, reducing total function time by ~40%

This optimization is particularly effective for cases with few optional parameters (like this 2-parameter scenario) where the overhead of the generic parsing utility outweighs its benefits.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 28, 2025 01:40
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 28, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant