Skip to content

cloudQuant/pyfolio_cpp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸš€ Pyfolio_cpp

A high-performance, modern C++20 reimplementation of the Python pyfolio portfolio analysis library

C++20 License: MIT Platform

🎯 Project Vision

Pyfolio_cpp transforms portfolio analysis by delivering 10-100x performance improvements over the original Python pyfolio while maintaining full compatibility and adding enterprise-grade features for institutional quantitative finance.

⚑ Why Pyfolio_cpp?

Performance Advantages

  • πŸš€ Speed: 10-100x faster than Python pyfolio
  • πŸ’Ύ Memory: 50% less memory usage for large portfolios
  • βš™οΈ Scalability: Handle 10,000+ securities with real-time analysis
  • πŸ”„ Parallel: Multi-threaded processing for complex calculations

Modern C++ Features

  • πŸŽ›οΈ Type Safety: Strong typing prevents financial calculation errors
  • πŸ”§ Zero-Cost Abstractions: Template-heavy design with no runtime overhead
  • πŸ“¦ Header-Only: Easy integration with single include
  • 🧩 Modular: Use only the components you need

Enterprise Ready

  • πŸ”’ Robust: Comprehensive error handling and validation
  • πŸ“Š Scalable: Cloud-native architecture for enterprise deployment
  • 🐍 Compatible: Python bindings for seamless migration
  • 🌐 Modern: Web interface for interactive portfolio analysis

πŸ“‹ Current Status

🚧 Project Phase: Planning and Architecture

This project is currently in the planning phase. Comprehensive documentation and implementation roadmap have been created:

Documentation Available

Planned Timeline

  • Weeks 1-4: Foundation and core analytics (MVP)
  • Weeks 5-8: Advanced risk analysis and attribution
  • Weeks 9-12: Visualization and Python integration
  • Weeks 13-14: Production deployment and optimization

πŸ—οΈ Architecture Overview

Core Components

pyfolio_cpp/
β”œβ”€β”€ include/pyfolio/
β”‚   β”œβ”€β”€ core/              # Time series, DataFrame, datetime
β”‚   β”œβ”€β”€ performance/       # Performance metrics and ratios
β”‚   β”œβ”€β”€ risk/             # VaR, factor exposure, risk attribution
β”‚   β”œβ”€β”€ positions/        # Portfolio holdings and allocation
β”‚   β”œβ”€β”€ transactions/     # Trade analysis and costs
β”‚   β”œβ”€β”€ attribution/      # Performance attribution models
β”‚   β”œβ”€β”€ visualization/    # Charts and reporting
β”‚   └── python/          # Python bindings

Key Features (Planned)

  • πŸ“ˆ Performance Metrics: Sharpe, Sortino, Calmar ratios with confidence intervals
  • ⚠️ Risk Analysis: VaR, factor exposures, stress testing
  • πŸ’° Position Analysis: Allocation, concentration, sector analysis
  • πŸ”„ Transaction Analysis: Round trips, trading costs, turnover
  • πŸ“Š Attribution: Multi-factor attribution, alpha/beta decomposition
  • πŸ“‰ Visualization: Interactive charts and tear sheet generation
  • 🐍 Python API: Drop-in replacement for existing pyfolio workflows

πŸš€ Quick Start (Future)

Installation (Planned)

# Using conda (recommended)
conda install -c conda-forge pyfolio-cpp

# Using pip for Python bindings
pip install pyfolio-cpp

# From source
git clone https://github.com/your-repo/pyfolio_cpp.git
cd pyfolio_cpp
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j$(nproc)

Basic Usage (Planned API)

#include <pyfolio/pyfolio.h>

int main() {
    // Load portfolio data
    auto returns = pyfolio::load_returns("returns.csv");
    auto positions = pyfolio::load_positions("positions.csv");
    
    // Calculate performance metrics
    auto sharpe = pyfolio::calculate_sharpe_ratio(returns, 0.02);
    auto max_dd = pyfolio::calculate_max_drawdown(returns);
    
    // Generate comprehensive tear sheet
    pyfolio::create_full_tear_sheet(returns, positions)
        .save_html("portfolio_analysis.html")
        .save_pdf("portfolio_analysis.pdf");
    
    return 0;
}

Python Integration (Planned)

import pyfolio_cpp as pf
import pandas as pd

# Load data (same as original pyfolio)
returns = pd.read_csv('returns.csv', index_col=0, parse_dates=True)
positions = pd.read_csv('positions.csv', index_col=0, parse_dates=True)

# 10-100x faster analysis
pf.create_full_tear_sheet(returns, positions=positions)

🎯 Target Use Cases

Quantitative Researchers

  • Rapid Prototyping: Fast iteration on strategy development
  • Backtesting: High-performance historical analysis
  • Research: Advanced statistical and Bayesian analysis

Portfolio Managers

  • Daily Monitoring: Real-time portfolio performance tracking
  • Risk Management: Comprehensive risk analysis and reporting
  • Client Reporting: Professional tear sheets and presentations

Institutions

  • Enterprise Scale: Handle large multi-strategy portfolios
  • Compliance: Automated regulatory reporting
  • Integration: REST API for existing systems

Developers

  • Easy Integration: Header-only library with minimal dependencies
  • Extensibility: Plugin architecture for custom metrics
  • Performance: Zero-copy operations and SIMD optimization

πŸ› οΈ Technology Stack (Planned)

Core Technologies

  • C++20: Modern standard with concepts, ranges, and modules
  • Eigen: High-performance linear algebra
  • Date: Modern date/time handling
  • fmt: Fast string formatting
  • spdlog: High-performance logging

Optional Features

  • Intel MKL: Optimized mathematical operations
  • CUDA: GPU acceleration for large portfolios
  • pybind11: Python bindings
  • React: Modern web interface

πŸ“Š Performance Targets

Benchmarks (Planned)

Operation Python pyfolio Pyfolio_cpp Target Speedup
Sharpe Ratio 10ms 0.1ms 100x
Full Tear Sheet 30s 1s 30x
10Y Daily Analysis 5min 5s 60x
Large Portfolio (1000 assets) 2hrs 2min 60x

Resource Usage

  • Memory: 50% reduction vs Python pyfolio
  • CPU: Linear scaling with core count
  • Storage: Efficient columnar data formats

🀝 Contributing

We welcome contributions from the quantitative finance and C++ communities!

Development Setup (Future)

git clone https://github.com/your-repo/pyfolio_cpp.git
cd pyfolio_cpp
./scripts/setup_dev_environment.sh

Contribution Areas

  • Core Analytics: Financial calculations and algorithms
  • Performance: SIMD optimization and parallel processing
  • Testing: Unit tests and validation against Python pyfolio
  • Documentation: Examples, tutorials, and API documentation
  • Integration: Python bindings and web interface

πŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Quantopian Team: Original pyfolio Python implementation
  • C++ Community: Modern C++ libraries and best practices
  • Eigen Project: High-performance linear algebra library
  • pybind11: Seamless Python integration

πŸ“ž Contact

  • GitHub Issues: Bug reports and feature requests
  • Email: [Maintainer email]
  • Discord: [Community chat]

Note: This project is currently in the planning phase. The documentation and architecture have been completed, and implementation will begin according to the detailed roadmap in the docs/ directory. Star this repository to follow our progress! ⭐

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •