Skip to content

A new package designed to take user input about accessibility challenges and generate structured summaries or actionable recommendations. It leverages advanced pattern matching with language model int

Notifications You must be signed in to change notification settings

chigwell/accessiqlue

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

Accessiqlue

PyPI version License: MIT Downloads LinkedIn

Accessiqlue is a Python package designed to take user input about accessibility challenges and generate structured summaries or actionable recommendations. It leverages advanced pattern matching with language model interactions to extract key points, identify accessibility needs, and produce clear, organized responses. This helps organizations better understand accessibility issues from user reports or feedback, enabling targeted improvements without processing raw multimedia data.

Installation

pip install accessiqlue

Usage

Basic Usage

from accessiqlue import accessiqlue

user_input = "The website is not accessible because the contrast is too low."
response = accessiqlue(user_input)
print(response)

Using a Custom LLM

You can use your own LLM instance by passing it to the accessiqlue function. Here are examples using different LLMs:

Using OpenAI

from langchain_openai import ChatOpenAI
from accessiqlue import accessiqlue

llm = ChatOpenAI()
response = accessiqlue(user_input, llm=llm)
print(response)

Using Anthropic

from langchain_anthropic import ChatAnthropic
from accessiqlue import accessiqlue

llm = ChatAnthropic()
response = accessiqlue(user_input, llm=llm)
print(response)

Using Google

from langchain_google_genai import ChatGoogleGenerativeAI
from accessiqlue import accessiqlue

llm = ChatGoogleGenerativeAI()
response = accessiqlue(user_input, llm=llm)
print(response)

Parameters

  • user_input (str): The user input text to process.
  • llm (Optional[BaseChatModel]): The LangChain LLM instance to use. If not provided, the default ChatLLM7 will be used.
  • api_key (Optional[str]): The API key for LLM7. If not provided, the environment variable LLM7_API_KEY will be used.

Default LLM

By default, Accessiqlue uses ChatLLM7 from langchain_llm7. You can get a free API key by registering at LLM7.

Rate Limits

The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you want higher rate limits, you can pass your own API key via the environment variable LLM7_API_KEY or directly to the accessiqlue function.

Issues

If you encounter any issues, please report them on the GitHub issues page.

Author

Releases

No releases published

Packages

No packages published

Languages