Embar is a new ORM for Python with the following goals:
- Type safety: your type checker should know what arguments are valid, and what is being returned from any call.
- Type hints: your LSP should be able to guide you towards the query you want to write.
- SQL-esque: you should be able to write queries simply by knowing SQL and your data model.
- You should be able to actually just write SQL when you need to.
These are mostly inspired by Drizzle. The Python ecosystem deserves something with similar DX.
Embar supports three database clients:
- SQLite 3 via the Python standard library
- Postgres via psycopg3
- Postgres via async psycopg3
The async psycopg3 client is recommended. The others are provided mostly for testing and experimenting locally.
Embar uses Template strings and so only supports Python 3.14.
Embar is pre-alpha and ready for experimentation but not production use.
Documentation: embar.rdrn.me
- Improve the story around updates. Requires codegen.
- Create a drizzle-style
db.query.users.findMany({ where: ... })alternative syntax. Requires codegen. - Create a migration diffing engine.
The quickstart uses the non-async sqlite client to make an easy example.
If you want to see a fully worked Postgres example, check out the Postgres Quickstart.
uv add embar# schema.py
from embar.column.common import Integer, Text
from embar.config import EmbarConfig
from embar.table import Table
class User(Table):
# If you don't provide a table name, it is generated from your class name
embar_config: EmbarConfig = EmbarConfig(table_name="users")
id: Integer = Integer(primary=True)
# Columns will also generate their own name if not provided
email: Text = Text("user_email", default="text", not_null=True)
class Message(Table):
id: Integer = Integer()
# Foreign key constraints are easy to add
user_id: Integer = Integer().fk(lambda: User.id)
content: Text = Text()In production, you would (probably) use the embar CLI to generate and run migrations.
This example uses the utility function to do it all in code.
# main.py
import sqlite3
from embar.db.sqlite import SqliteDb
conn = sqlite3.connect(":memory:")
db = SqliteDb(conn)
db.migrate([User, Message]).run()user = User(id=1, email="foo@bar.com")
message = Message(id=1, user_id=user.id, content="Hello!")
db.insert(User).values(user).run()
# you can return your inserted data if you want
msg_inserted = db.insert(Message).values(message).returning().run()
assert msg_inserted[0].content == message.contentWith join, where and group by.
from typing import Annotated
from pydantic import BaseModel
from embar.query.where import Eq, Like, Or
class UserSel(BaseModel):
id: Annotated[int, User.id]
messages: Annotated[list[str], Message.content.many()]
users = (
db.select(UserSel)
.from_(User)
.left_join(Message, Eq(User.id, Message.user_id))
.where(Or(
Eq(User.id, 1),
Like(User.email, "foo%")
))
.group_by(User.id)
.run()
)
# [ UserSel(id=1, messages=['Hello!']) ]This time with fully nested child tables, and some raw SQL.
from datetime import datetime
from embar.sql import Sql
class UserHydrated(BaseModel):
email: Annotated[str, User.email]
messages: Annotated[list[Message], Message.many()]
date: Annotated[datetime, Sql(t"CURRENT_TIMESTAMP")]
users = (
db.select(UserHydrated)
.from_(User)
.left_join(Message, Eq(User.id, Message.user_id))
.group_by(User.id)
.limit(2)
.run()
)
# [UserHydrated(
# email='foo@bar.com',
# messages=[Message(content='Hello!', id=1, user_id=1)],
# date: datetime(2025, 10, 26, ...)
# )]Every query produces exactly one... query.
And you can always see what's happening under the hood with the .sql() method:
users_query = (
db.select(UserHydrated)
.from_(User)
.left_join(Message, Eq(User.id, Message.user_id))
.group_by(User.id)
.sql()
)
users_query.sql
# SELECT
# "users"."user_email" AS "email",
# json_group_array(json_object(
# 'id', "message"."id",
# 'user_id', "message"."user_id",
# 'content', "message"."content"
# )) AS "messages",
# CURRENT_TIMESTAMP AS "date"
# FROM "users"
# LEFT JOIN "message" ON "users"."id" = "message"."user_id"
# GROUP BY "users"."id"Unfortunately this requires another model to be defined, as Python doesn't have a Partial[] type.
from typing import TypedDict
class MessageUpdate(TypedDict, total=False):
id: int
user_id: int
content: str
(
db.update(Message)
.set(MessageUpdate(content="Goodbye"))
.where(Eq(Message.id, 1))
.run()
)And return the deleted data if you like.
deleted = db.delete(Message).returning().run()
assert len(deleted) == 1from embar.constraint import Index
class MessageIndexed(Table):
embar_config: EmbarConfig = EmbarConfig(
constraints=[Index("message_idx").on(lambda: MessageIndexed.user_id)]
)
user_id: Integer = Integer().fk(lambda: User.id)db.sql(t"DELETE FROM {Message}").run()Or with a return:
class UserId(BaseModel):
id: Annotated[int, int]
res = (
db.sql(t"SELECT * FROM {User}")
.model(UserId)
.run()
)
# [UserId(id=1)]Properly diffing migrations is not supported yet, but it's in the pipeline.
In the meantime, you have two options:
This uses which uses an LLM (and your ANTHROPIC_API_KEY) to generate vibe-diffs.
You should inspect these before running them.
You can see a working example at example/.
First create a config file embar.toml in your app root:
dialect = "postgresql"
db_url = "postgresql://pg:pw@localhost:3601/db"
schema_path = "app.schema"
migrations_dir = "migrations" # optionalIf you just want to output the current schema as SQL (DDL), run:
embar schemaThen to generate migrations, run the following and follow the prompts:
embar migrateOr to push directly to your db, run the following. You will be prompted before each change.
embar pushUse the migrate() method shown in the quickstart to dump the current DDL to a .sql file.
Then use a schema management tool to manage updates. Some options are:
Install uv.
Then:
uv syncThis project uses poethepoet for tasks/scripts.
You'll need Docker installed to run tests.
Format, lint, type-check, test:
uv run poe fmt
lint
check
test
# or
uv run poe allOr do this:
# Run this or put it in .zshrc/.bashrc/etc
alias poe="uv run poe"
# Then you can just:
poe testThere seems to be a gap in the Python ORM market.
- SQLAlchemy (and, by extension, SQLModel) is probably great if you're familiar with it, but too complicated for people who don't live in it
- PonyORM has no types
- PugSQL has no types
- TortoiseORM is probably appealing if you like Django/ActiveRecord
- Piccolo is cool but not very type-safe (functions accept Any, return dicts)
- ormar is not very type-safe and still based on SQLAlchemy