A library to implement Stochastic Approximation Markov Chain Monte Carlo (SAMC) in Julia.
It also includes Metropolis-Hastings and Adaptive Metropolis-within-Gibbs as simpler techniques that can be compared using the same API.
As a short example for performing MCMC over a univariate parameter:
using Base.Test
using Distributions
using SAMC
import SAMC: energy, propose!, reject!, save!, record
type MySampler <: SAMC.Sampler
curr :: Float64
old :: Float64
data :: Vector{Float64}
end
function propose!(obj::MySampler, block=1, sigma=1.0)
# block and sigma are for AMWG block updating
obj.curr += randn()
return 0 # Return the scheme or block we updated
end
function reject!(obj::MySampler)
obj.curr = obj.old
end
function save!(obj::MySampler)
obj.old = obj.curr
end
function record(obj::MySampler)
return obj.curr
end
function energy(obj::MySampler, block=1) # block is for AMWG
-logpdf(Normal(obj.curr,1.0), obj.data) |> sum
end
########################
# MH
########################
data = rand(5)
#This ^^ initializes the starting point of the chain and the data
mh = MHRecord(MySampler(0., 0., data) ,burn=100)
sample!(mh,2000)
# Now mh.db will be a Vector{Any} of Floats (as in general the Sampler.curr
# type is a pointer type
# posterior average (expectation):
@show posterior_e(identity, mh)
########################
# AMWG
########################
numblocks = 1
amwg = AMWGRecord(MySampler(0., 0., data), numblocks,burn=100)
sample!(amwg,2000)
@show posterior_e(identity, amwg)
########################
# SAMC
########################
samcsamp = set_energy_limits(MySampler(0.,0.,data))
# ^^ Convenience function to set energy limits
samcsamp.stepscale = 10
sample!(samcsamp, 2000)
@show posterior_e(identity, samcsamp)
########################
# POP SAMC
########################
num_chains = 5
genfunc = _ -> MySampler(0., 0., data)
popsamcsamp = set_energy_limits(genfunc, num_chains)
# ^^ Convenience function to set energy limits
popsamcsamp.stepscale = 10
sample!(popsamcsamp, 2000)
# Now popsamcsamp.dbs will be a Vector{Vector{Any}} with all recorded samples
#
@show posterior_e(identity, popsamcsamp)Note that the object passed into the record constructor will be modified.
Therefore, you should make a copy if you want to retain the original.
(Originally this copy was made internally, but caused a hair-pull inducing bug
when an opaque C pointer type was passed in and then deallocated).