Skip to content

ai-crews/ai-interview-guide

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

30 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿง‘๐Ÿปโ€๐Ÿ’ป๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป AI ๊ธฐ์ˆ ๋ฉด์ ‘ ์Šคํ„ฐ๋””

๋ฐ์ดํ„ฐ ์‚ฌ์ด์–ธํ‹ฐ์ŠคํŠธ & AI ์—”์ง€๋‹ˆ์–ด ์ทจ์—…์„ ์œ„ํ•œ ์ฒด๊ณ„์ ์ธ ๊ธฐ์ˆ ๋ฉด์ ‘ ์Šคํ„ฐ๋””

Study Duration Participants


๐ŸŽฏ Quick Start

๐Ÿ“‹ ์Šคํ„ฐ๋”” ๊ฐœ์š”

  • ๊ธฐ๊ฐ„: 2025.07.09 ~ 2025.09.03 (9์ฃผ๊ฐ„)
  • ํ˜•ํƒœ: ์ด๋ก  ์ค‘์‹ฌ + ํ† ๋ก ์‹ ํ•™์Šต
  • ๋ชฉํ‘œ: ์‹ค๋ฌด์ง„๊ณผ์˜ ๊ธฐ์ˆ ๋ฉด์ ‘ ์™„๋ฒฝ ๋Œ€๋น„

๐Ÿ† ํ•™์Šต ์„ฑ๊ณผ

  • โœ… ํ•ต์‹ฌ ๊ฐœ๋… ์™„๋ฒฝ ์ดํ•ด
  • โœ… ๊ผฌ๋ฆฌ์งˆ๋ฌธ ๋Œ€์‘ ๋Šฅ๋ ฅ ํ–ฅ์ƒ
  • โœ… ์‹ค๋ฌด ์ ์šฉ ๊ฒฝํ—˜ ์ถ•์ 

๐Ÿ“… ์ปค๋ฆฌํ˜๋Ÿผ ๋กœ๋“œ๋งต

Week ์ฃผ์ œ ํ•™์Šต ๋‚ด์šฉ ํ•ต์‹ฌ ํ‚ค์›Œ๋“œ
1
07.09
๐ŸŽฌ Kick-off โ€ข ์Šคํ„ฐ๋”” ์ง„ํ–‰๋ฃฐ ์ˆ˜๋ฆฝ
์Šคํ„ฐ๋”” ๊ทœ์น™
2
07.16
๐Ÿค– ๋จธ์‹ ๋Ÿฌ๋‹ โ€ข ํšŒ๊ท€/๋ถ„๋ฅ˜ ๋ชจ๋ธ ์™„์ „์ •๋ณต
โ€ข ํ‰๊ฐ€์ง€ํ‘œ & Ensemble ๊ธฐ๋ฒ•
โ€ข Hyperparameter Tuning & Cross-validation

ML ๋ชจ๋ธ
3
07.23
๐Ÿ“Š ํ†ต๊ณ„ํ•™ โ€ข ๊ธฐ์ดˆํ†ต๊ณ„ & ํ™•๋ฅ ๋ถ„ํฌ
โ€ข ๊ฐ€์„ค๊ฒ€์ • & ์ถ”๋ก ํ†ต๊ณ„
โ€ข EDA ๊ทธ๋ž˜ํ”„ ์ข…๋ฅ˜
ํ†ต๊ณ„ ๊ธฐ์ดˆ
๊ฐ€์„ค๊ฒ€์ •
4
07.30
๐Ÿง  ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ดˆ โ€ข MLP & Backpropagation
โ€ข Activation Function & Loss Function
โ€ข ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ• & Optimizer & Perceptron
์‹ ๊ฒฝ๋ง
์—ญ์ „ํŒŒ
5
08.06
๐Ÿ”ฅ ๋”ฅ๋Ÿฌ๋‹ ์‹ฌํ™” โ€ข CNN ๊ณ„์—ด ๋ชจ๋ธ
โ€ข RNN ๊ณ„์—ด ๋ชจ๋ธ
โ€ข GPT๊นŒ์ง€์˜ ๋ฐœ์ „ ๊ณผ์ •
CNN/RNN
GPT
6
08.13
๐ŸŒŸ LLM ๊ธฐ์ดˆ โ€ข ChatGPT & LLaMA ๋ถ„์„
โ€ข sLLM ๋ชจ๋ธ ์ดํ•ด
โ€ข LLM ํ™œ์šฉ ์ „๋žต
GPT
LLaMA
ํŒŒ์šด๋ฐ์ด์…˜ ๋ชจ๋ธ
7
08.20
๐Ÿ” RAG ์‹œ์Šคํ…œ โ€ข RAG ์•„ํ‚คํ…์ฒ˜ ์„ค๊ณ„
โ€ข ๋ฒกํ„ฐ DB & ์ž„๋ฒ ๋”ฉ
โ€ข ์‹ค๋ฌด RAG ๊ตฌ์ถ• ์‚ฌ๋ก€
RAG
Vector DB
Embedding
8
08.27
โšก ๊ธฐ์ˆ ์Šคํƒ ์ถ”ํ›„ ์ง„ํ–‰ ์ถ”ํ›„ ์ง„ํ–‰
9
09.03
๐ŸŽ‰ Wrap-up ์ถ”ํ›„ ์ง„ํ–‰ ์ถ”ํ›„ ์ง„ํ–‰

๐Ÿ“š ํ•™์Šต ๋ฒ”์œ„

โœ… Core Topics

๐ŸŽฏ ๋จธ์‹ ๋Ÿฌ๋‹/๋”ฅ๋Ÿฌ๋‹ ๊ธฐ์ดˆ ์ด๋ก 
๐Ÿ“Š ํ†ต๊ณ„ํ•™ ํ•ต์‹ฌ ๊ฐœ๋…  
๐Ÿค– LLM & ์ตœ์‹  AI ๊ธฐ์ˆ 
โš™๏ธ ์‹ค๋ฌด ๊ธฐ์ˆ ์Šคํƒ

โŒ Out of Scope

๐Ÿ–ผ๏ธ Computer Vision ์‹ฌํ™”
๐ŸŽต Audio/Speech Processing
๐Ÿ’ป ์‹œ์Šคํ…œ ํ”„๋กœ๊ทธ๋ž˜๋ฐ
๐Ÿ”ง ์ธํ”„๋ผ ์šด์˜

๐Ÿ’ก Optional Learning

๐Ÿ—ƒ๏ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค - ํ•™์Šต ์‹œ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค


๐Ÿ“– ํ•ต์‹ฌ ํ•™์Šต ์ž๋ฃŒ

๋ถ„์•ผ ์ž๋ฃŒ ์„ค๋ช…
๊ธฐ๋ณธ๊ธฐ AI-Tech-Interview ๋จธ์‹ ๋Ÿฌ๋‹/๋”ฅ๋Ÿฌ๋‹/ํ†ต๊ณ„/ํŒŒ์ด์ฌ ์ข…ํ•ฉ
LLM LLM Interview Questions ์ตœ์‹  LLM ๊ธฐ์ˆ  ๋ฉด์ ‘ ์งˆ๋ฌธ์ง‘

๐Ÿ› ๏ธ ์ƒ์„ธ ์ปค๋ฆฌํ˜๋Ÿผ

๐Ÿ“ˆ ์ •ํ˜•๋ฐ์ดํ„ฐ ํšŒ๊ท€

๐ŸŽฏ ๊ธฐ๋ณธ ๊ฐœ๋…

  • ํ‰๊ฐ€์ง€ํ‘œ: MAE, MSE, RMSE, Rยฒ
  • Loss Function: ์†์‹คํ•จ์ˆ˜์˜ ์ข…๋ฅ˜์™€ ํŠน์„ฑ

๐Ÿ”ง ๋ชจ๋ธ ์œ ํ˜• (Scikit-learn)

  • ์„ ํ˜• ๋ชจ๋ธ:
    • ๋‹จ์ˆœ์„ ํ˜•ํšŒ๊ท€, ๋‹ค์ค‘์„ ํ˜•ํšŒ๊ท€
    • ๋‹คํ•ญํšŒ๊ท€
  • ์ •๊ทœํ™” ๋ชจ๋ธ:
    • ๋ฆฟ์ง€ํšŒ๊ท€(Ridge), ๋ผ์˜ํšŒ๊ท€(Lasso)
    • ์—˜๋ผ์Šคํ‹ฑ๋„ท ํšŒ๊ท€(ElasticNet)
  • ํŠธ๋ฆฌ ๊ธฐ๋ฐ˜: ํŠธ๋ฆฌ๊ธฐ๋ฐ˜ ํšŒ๊ท€๋ชจ๋ธ
  • ๋”ฅ๋Ÿฌ๋‹: ๋”ฅ๋Ÿฌ๋‹ ํšŒ๊ท€๋ชจ๋ธ

โš™๏ธ Loss Function ์ตœ์ ํ™” ๋ฐฉ๋ฒ•

  • ์ •๊ทœ ๋ฐฉ์ •์‹(Normal Equation)
  • ํŠน์ด๊ฐ’ ๋ถ„ํ•ด(SVD)
  • ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•(Gradient Descent)
๐Ÿ“Š ์ •ํ˜•๋ฐ์ดํ„ฐ ๋ถ„๋ฅ˜

๐Ÿ“‹ ํ‰๊ฐ€์ง€ํ‘œ

  • ํ˜ผ๋™ํ–‰๋ ฌ: Confusion Matrix (Scikit-learn)
  • ๊ธฐ๋ณธ ์ง€ํ‘œ:
    • Accuracy, Error Rate (Scikit-learn)
    • Precision, Recall (Scikit-learn)
  • ๋ณตํ•ฉ ์ง€ํ‘œ:
    • F1 Score, F-Beta Score (Scikit-learn)
  • ํ™•๋ฅ  ๊ธฐ๋ฐ˜:
    • AUROC, AUPRC (Scikit-learn)
  • ํ†ต๊ณ„ ๊ธฐ๋ฐ˜: KS-stat (Scikit-learn)

๐Ÿค– ๋ชจ๋ธ ์œ ํ˜•

  • ์ „ํ†ต์  ๋ชจ๋ธ:
    • ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€ (Scikit-learn)
    • k-NN (Scikit-learn)
    • SVM (Scikit-learn)
  • ํŠธ๋ฆฌ ๋ชจ๋ธ:
    • Decision Tree (Scikit-learn)
    • Random Forest (Scikit-learn)
  • ๋ถ€์ŠคํŒ…:
    • AdaBoost, Gradient Boosting (Scikit-learn)
    • XGBoost, LightGBM (XGBoost, LightGBM)
  • ๋”ฅ๋Ÿฌ๋‹: ๋”ฅ๋Ÿฌ๋‹ ๋ถ„๋ฅ˜ ๋ชจ๋ธ (PyTorch, TensorFlow)
๐Ÿš€ ์„ฑ๋Šฅ ๊ฐœ์„  ๋ฐฉ๋ฒ•

โœ… ๊ต์ฐจ๊ฒ€์ฆ

  • ๊ธฐ๋ณธ:
    • Holdout (Scikit-learn)
    • k-Fold (Scikit-learn)
    • Stratified k-Fold (Scikit-learn)
  • ํŠน์ˆ˜:
    • LOOCV (Scikit-learn)
    • Time Series Cross Validation (Scikit-learn)
  • ๋ฐ˜๋ณต: Repeated K-Fold Cross Validation (Scikit-learn)

โšก ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ํŠœ๋‹

  • Grid Search: ์ „์—ญ ํƒ์ƒ‰ (Scikit-learn)
  • Random Search: ๋žœ๋ค ํƒ์ƒ‰ (Scikit-learn)
  • Bayesian Search: ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” (Optuna)

๐Ÿ“Š ์ƒ˜ํ”Œ๋ง & ์•™์ƒ๋ธ”

  • ์ƒ˜ํ”Œ๋ง: ์–ธ๋”์ƒ˜ํ”Œ๋ง, ์˜ค๋ฒ„์ƒ˜ํ”Œ๋ง, ๋ถ€ํŠธ์ŠคํŠธ๋ž˜ํ•‘
  • ์•™์ƒ๋ธ”: Voting, Bagging, Boosting, Stacking

๐Ÿ” ๊ณ ๊ธ‰ ๊ธฐ๋ฒ•

  • ํ”ผ์ฒ˜ ๊ฐ€๊ณต: ํŠน์„ฑ ๋ณ€ํ™˜ ๋ฐ ์ƒ์„ฑ
  • ํ•ฉ์„ฑ๋ฐ์ดํ„ฐ ์ƒ์„ฑ: ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ธฐ๋ฒ•
  • ์„ฑ๋Šฅ ๋ชจ๋‹ˆํ„ฐ๋ง:
    • Drift ํƒ์ง€ ๋ฐ ๋Œ€์‘
    • ์„ฑ๋Šฅ ํ•˜๋ฝ ๋Œ€์‘ ๋ฐฉ๋ฒ•
๐Ÿ”ง ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ

๐ŸŽฏ ์ด์ƒ์น˜ ์ฒ˜๋ฆฌ

  • ์ด์ƒ์น˜ ์ข…๋ฅ˜: ํ†ต๊ณ„์ , ๋„๋ฉ”์ธ ๊ธฐ๋ฐ˜ ์ด์ƒ์น˜
  • ์ฒ˜๋ฆฌ ๋ฐฉ์‹: ์ œ๊ฑฐ, ๋ณ€ํ™˜, ๋Œ€์ฒด ์ „๋žต

๐Ÿ“ ๊ฒฐ์ธก์น˜ ์ฒ˜๋ฆฌ

  • ๊ฒฐ์ธก์น˜ ์ข…๋ฅ˜: MCAR, MAR, MNAR
  • ์ฒ˜๋ฆฌ ๋ฐฉ์‹: ์‚ญ์ œ, ๋Œ€์ฒด(ํ‰๊ท , ์ค‘์•™๊ฐ’, ์ตœ๋นˆ๊ฐ’), ์˜ˆ์ธก ๋ชจ๋ธ๋ง

โš–๏ธ Feature Scaling

  • ์ •๊ทœํ™”: Min-Max Scaling, Robust Scaling
  • ํ‘œ์ค€ํ™”: Standard Scaling, Unit Vector Scaling

๐Ÿท๏ธ Feature Encoding

  • ๋ฒ”์ฃผํ˜• ๋ฐ์ดํ„ฐ: One-Hot, Label, Ordinal Encoding
  • ๊ณ ์ฐจ์› ๋ฒ”์ฃผํ˜•: Target Encoding, Frequency Encoding
๐Ÿ“Š ํ†ต๊ณ„ํ•™

๐Ÿ“ˆ ๊ธฐ์ˆ ํ†ต๊ณ„

  • ๊ธฐ์ˆ ํ†ต๊ณ„๋Ÿ‰ (๋Œ€ํ‘ฏ๊ฐ’๊ณผ ์‚ฐํฌ๋„):
    • ํ‰๊ท , ์ค‘์•™๊ฐ’, ์ตœ๋นˆ๊ฐ’
    • ๋ถ„์‚ฐ, ํ‘œ์ค€ํŽธ์ฐจ, ์‚ฌ๋ถ„์œ„์ˆ˜
    • ์™œ๋„, ์ฒจ๋„
  • EDA ๊ทธ๋ž˜ํ”„ ์ข…๋ฅ˜:
    • ํžˆ์Šคํ† ๊ทธ๋žจ, ๋ฐ•์Šคํ”Œ๋กฏ, ๋ง‰๋Œ€๊ทธ๋ž˜ํ”„ ๋“ฑ

๐ŸŽฒ ์ถ”๋ก ํ†ต๊ณ„

  • ํ™•๋ฅ ๋ถ„ํฌ ์ข…๋ฅ˜:

    • ์ •๊ทœ๋ถ„ํฌ, t๋ถ„ํฌ, z๋ถ„ํฌ, F๋ถ„ํฌ
    • ๋ฒ ๋ฅด๋ˆ„์ด๋ถ„ํฌ, ์ดํ•ญ๋ถ„ํฌ, ํฌ์•„์†ก๋ถ„ํฌ
  • ํ†ต๊ณ„์  ์ถ”์ •:

    • ์‹ ๋ขฐ๋„, ํ‘œ์ค€์˜ค์ฐจ
    • ๋ชจํ‰๊ท  ์ถ”์ •(z์ถ”์ •, t์ถ”์ •)
    • ๋ชจ๋น„์œจ ์ถ”์ •
  • ๊ฐ€์„ค ๊ฒ€์ • ์ข…๋ฅ˜:

    • ๊ท€๋ฌด๊ฐ€์„ค/๋Œ€๋ฆฝ๊ฐ€์„ค, ์œ ์˜์ˆ˜์ค€, p-value
    • ๊ฒ€์ • ์˜ค๋ฅ˜ ์ข…๋ฅ˜ (Type I, Type II)
  • ํ‰๊ท ๊ฐ’ ๊ฒ€์ •:

    • ๋‹จ์ผํ‘œ๋ณธ t-๊ฒ€์ •
    • ๋…๋ฆฝํ‘œ๋ณธ t-๊ฒ€์ •
    • ๋Œ€์‘ํ‘œ๋ณธ t-๊ฒ€์ •
  • ๊ธฐํƒ€ ๊ฒ€์ •:

    • ๋น„์œจ ๊ฒ€์ •
    • ๋ถ„์‚ฐ ๊ฒ€์ • (F-test, ๋“ฑ๋ถ„์‚ฐ ๊ฒ€์ •)
    • ์ƒ๊ด€์„ฑ ๊ฒ€์ •
    • ํšŒ๊ท€๋ถ„์„

๐Ÿ’ก 4๋‹จ๊ณ„ ํ•™์Šต ํ”„๋กœ์„ธ์Šค

1๏ธโƒฃ ๊ฐœ๋… ํ•™์Šต ํ•ต์‹ฌ ์ด๋ก ์„ ์ฒด๊ณ„์ ์œผ๋กœ ์ •๋ฆฌ
2๏ธโƒฃ ์žฅ๋‹จ์  ๋ถ„์„ ๊ฐ ๋ฐฉ๋ฒ•๋ก ์˜ ํŠน์ง•๊ณผ ํ•œ๊ณ„์  ํŒŒ์•…
3๏ธโƒฃ ์‹ฌํ™” ์งˆ๋ฌธ ๊ผฌ๋ฆฌ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋…ผ๋ฆฌ์  ๋‹ต๋ณ€ ์ค€๋น„
4๏ธโƒฃ ์‹ค์Šต ํ™•์ธ ์ฃผ์š” ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํ™œ์šฉ๋ฒ• ์ˆ™์ง€

๐Ÿ“ ์Šคํ„ฐ๋”” ์šด์˜

  • ๐Ÿ“… ์ •๊ธฐ ๋ชจ์ž„: ๋งค์ฃผ ์ˆ˜์š”์ผ 21:00-22:00
  • ๐Ÿ’ป ์˜จ๋ผ์ธ: Zoom

๐Ÿ† Contributors

์Šคํ„ฐ๋””์— ์ฐธ์—ฌํ•˜๊ณ  ๊ณ„์‹  ๋ชจ๋“  ๋ถ„๋“ค๊ป˜ ๊ฐ์‚ฌ๋“œ๋ฆฝ๋‹ˆ๋‹ค!

  • ์ฐธ์—ฌ์ž ์ถ”๊ฐ€ ์˜ˆ์ •...

๐Ÿš€ ํ•จ๊ป˜ ์„ฑ์žฅํ•˜๋Š” AI ๊ธฐ์ˆ ๋ฉด์ ‘ ์Šคํ„ฐ๋””

"์ค€๋น„๋œ ์ž์—๊ฒŒ ๊ธฐํšŒ๋Š” ์ฐพ์•„์˜จ๋‹ค"

Made with โค๏ธ by AI Crew

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 7