Skip to content

aguang5241/Masgent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Masgent

DOI

Masgent: Materials Simulation Agent

╔═════════════════════════════════════════════════════════════════════════╗
║                                                                         ║
║  ███╗   ███╗  █████╗  ███████╗  ██████╗  ███████╗ ███╗   ██╗ ████████╗  ║
║  ████╗ ████║ ██╔══██╗ ██╔════╝ ██╔════╝  ██╔════╝ ████╗  ██║ ╚══██╔══╝  ║
║  ██╔████╔██║ ███████║ ███████╗ ██║  ███╗ █████╗   ██╔██╗ ██║    ██║     ║
║  ██║╚██╔╝██║ ██╔══██║ ╚════██║ ██║   ██║ ██╔══╝   ██║╚██╗██║    ██║     ║
║  ██║ ╚═╝ ██║ ██║  ██║ ███████║ ╚██████╔╝ ███████╗ ██║ ╚████║    ██║     ║
║  ╚═╝     ╚═╝ ╚═╝  ╚═╝ ╚══════╝  ╚═════╝  ╚══════╝ ╚═╝  ╚═══╝    ╚═╝     ║
║                                                                         ║
║                                   MASGENT: Materials Simulation Agent   ║
║                                      Copyright (c) 2025 Guangchen Liu   ║
║                                                                         ║
║  License:       MIT License                                             ║
║  Citation:      Liu, G. et al. (2025). arXiv: 2512.23010                ║
║  DOI:           https://doi.org/10.48550/arXiv.2512.23010               ║
║  Repository:    https://github.com/aguang5241/Masgent                   ║
║  Contact:       gliu4@wpi.edu                                           ║
║                                                                         ║
╚═════════════════════════════════════════════════════════════════════════╝

🚀 Overview

Masgent is a materials simulation AI agent that streamlines DFT workflows and analysis, fast machine-learning-potential (MLP) simulations, and lightweight ML modeling for materials science. With automated tools for structure handling, VASP input generation, workflow preparation & analysis, and rapid property prediction, Masgent simplifies complex simulation tasks and boosts productivity for both researchers and students.

🎥 Demos

  • Basic Usage:
    e.g., prepare POSCAR files and generate SQS structures

    Basic Usage
  • AI Agent:
    e.g., prepare POSCAR files and run EOS calculations simply by chatting

    AI Agent

⭐️ Why Masgent?

Most materials-simulation tools—pymatgen, ASE, VASPkit, etc.—require manual scripting, multi-step workflows, and deep HPC expertise to run full DFT or ML-based simulations. Masgent removes that barrier by providing a unified, AI-driven interface for structure generation, workflow preparation, fast simulations, and analysis.

Masgent offers:

  • An AI-native simulation assistant that prepares VASP workflows, analyzes results, and answers technical questions through natural language.
  • Turn-key VASP workflow templates (Convergence Test, EOS, Elastic, AIMD, NEB) with built-in analysis tools.
  • Automatic generation of all VASP inputs — INCAR, KPOINTS, POTCAR, POSCAR, and HPC job scripts — with sensible defaults.
  • One-command structure operations, including defect creation, supercells, slabs, interfaces, and SQS generation.
  • Visualization of structures through interactive web-based viewers.
  • Fast machine-learning-potential simulations using SevenNet, CHGNet, Orb-v3, and MatSim for rapid EOS, elasticity, and MD.
  • Lightweight ML utilities for feature preparation, dimensionality reduction, data augmentation, hyperparameter tuning, and model training.

🤖 Supported AI Models

Provider Model API Key Required Notes
Masgent Masgent AI ❌ No No API key needed, response may be slower on cold start
OpenAI GPT-5 Nano ✅ Yes Requires OpenAI API key
Anthropic Claude Sonnet 4.5 ✅ Yes Requires Anthropic API key
Google Gemini 2.5 Flash ✅ Yes Requires Google API key
xAI Grok 4.1 Fast ✅ Yes Requires Grok (xAI) API key
DeepSeek DeepSeek Chat ✅ Yes Requires DeepSeek API key
Alibaba Qwen Flash ✅ Yes Requires Alibaba Cloud API key

🧩 Features

  1. Density Functional Theory (DFT) Simulations
  • 1.1 Structure Preparation & Manipulation

    • 1.1.1 Generate POSCAR from chemical formula
    • 1.1.2 Convert POSCAR coordinates (Direct <-> Cartesian)
    • 1.1.3 Convert structure file formats (CIF, POSCAR, XYZ)
    • 1.1.4 Generate structures with defects (Vacancies, Substitutions, Interstitials)
    • 1.1.5 Generate supercells
    • 1.1.6 Generate Special Quasirandom Structures (SQS)
    • 1.1.7 Generate surface slabs
    • 1.1.8 Generate interface structures
    • 1.1.9 Visualize structures
  • 1.2 VASP Input File Preparation

    • 1.2.1 Prepare full VASP input files (INCAR, KPOINTS, POTCAR, POSCAR)
    • 1.2.2 Generate INCAR templates
      • MPMetalRelaxSet: suggested for metallic structure relaxation
      • MPRelaxSet: suggested for structure relaxation
      • MPStaticSet: suggested for static calculations
      • MPNonSCFBandSet: suggested for non-self-consistent field calculations (Band structure)
      • MPNonSCFDOSSet: suggested for non-self-consistent field calculations (Density of States)
      • MPMDSet: suggested for molecular dynamics simulations
    • 1.2.3 Generate KPOINTS with specified accuracy
    • 1.2.4 Generate HPC job submission script
  • 1.3 Standard VASP Workflow Preparation

    • 1.3.1 Convergence test (ENCUT, KPOINTS)
    • 1.3.2 Equation of State (EOS)
    • 1.3.3 Elastic constants calculations
    • 1.3.4 Ab-initio Molecular Dynamics (AIMD)
    • 1.3.5 Nudged Elastic Band (NEB) calculations
  • 1.4 Standard VASP Workflow Output Analysis

    • 1.4.1 Convergence test analysis
    • 1.4.2 Equation of State (EOS) analysis
    • 1.4.3 Elastic constants analysis
    • 1.4.4 Ab-initio Molecular Dynamics (AIMD) analysis
    • 1.4.5 Nudged Elastic Band (NEB) analysis
  1. Fast Simulations Using Machine Learning Potentials (MLPs)
  • Supported MLPs:
    • 2.1 SevenNet
    • 2.2 CHGNet
    • 2.3 Orb-v3
    • 2.4 MatSim
  • Implemented Simulations for all MLPs:
    • Single Point Energy Calculation
    • Equation of State (EOS) Calculation
    • Elastic Constants Calculation
    • Molecular Dynamics Simulation (NVT)
  1. Simple Machine Learning for Materials Science
  • 3.1 Data Preparation & Feature Analysis
    • 3.1.1 Feature analysis and visualization
    • 3.1.2 Dimensionality reduction (if too many features)
    • 3.1.3 Data augmentation (if limited data)
  • 3.2 Model Design & Hyperparameter Tuning
  • 3.3 Model Training & Evaluation
  • 3.4 Pre-trained Model Applications
    • 3.4.1 Mechanical Properties Prediction in Sc-modified Al-Mg-Si Alloys
    • 3.4.2 Phase Stability & Elastic Properties Prediction in Al-Co-Cr-Fe-Ni High-Entropy Alloys

🔧 Installation

  1. Requirements:
    • Python >= 3.11, < 3.14
  2. Install Masgent:
    pip install -U masgent
  3. Optional:

▶️ Usage

  • After installation, simply run:
    masgent
  • You'll guided by an interactive menu and can invoke the AI agent anytime. Ask anything in AI chat, for example:
    > Generate a POSCAR file for NaCl.
    > Prepare VASP input files for a graphene structure.
    > Add defects to a silicon crystal POSCAR.
    > ...

🐞 Issues and Suggestions

Found a bug? Have a feature request?
Please open an issue here: https://github.com/aguang5241/masgent/issues

📚 Cite Us

If you use Masgent in your research, please cite the following reference:

@misc{liu2025masgentaiassistedmaterialssimulation,
  title={Masgent: An AI-assisted Materials Simulation Agent}, 
  author={Guanghen Liu and Songge Yang and Yu Zhong},
  year={2025},
  eprint={2512.23010},
  archivePrefix={arXiv},
  primaryClass={physics.comp-ph},
  url={https://arxiv.org/abs/2512.23010}, 
}

🙏 Acknowledgements

Masgent builds on the open-source materials ecosystem, including ASE, Pymatgen, Icet, and modern Machine Learning Potentials. We thank the developers of these tools for making advanced materials simulation possible.

About

Masgent: Materials Simulation Agent

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages