Masgent: Materials Simulation Agent
╔═════════════════════════════════════════════════════════════════════════╗
║ ║
║ ███╗ ███╗ █████╗ ███████╗ ██████╗ ███████╗ ███╗ ██╗ ████████╗ ║
║ ████╗ ████║ ██╔══██╗ ██╔════╝ ██╔════╝ ██╔════╝ ████╗ ██║ ╚══██╔══╝ ║
║ ██╔████╔██║ ███████║ ███████╗ ██║ ███╗ █████╗ ██╔██╗ ██║ ██║ ║
║ ██║╚██╔╝██║ ██╔══██║ ╚════██║ ██║ ██║ ██╔══╝ ██║╚██╗██║ ██║ ║
║ ██║ ╚═╝ ██║ ██║ ██║ ███████║ ╚██████╔╝ ███████╗ ██║ ╚████║ ██║ ║
║ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝ ╚═════╝ ╚══════╝ ╚═╝ ╚═══╝ ╚═╝ ║
║ ║
║ MASGENT: Materials Simulation Agent ║
║ Copyright (c) 2025 Guangchen Liu ║
║ ║
║ License: MIT License ║
║ Citation: Liu, G. et al. (2025). arXiv: 2512.23010 ║
║ DOI: https://doi.org/10.48550/arXiv.2512.23010 ║
║ Repository: https://github.com/aguang5241/Masgent ║
║ Contact: gliu4@wpi.edu ║
║ ║
╚═════════════════════════════════════════════════════════════════════════╝Masgent is a materials simulation AI agent that streamlines DFT workflows and analysis, fast machine-learning-potential (MLP) simulations, and lightweight ML modeling for materials science. With automated tools for structure handling, VASP input generation, workflow preparation & analysis, and rapid property prediction, Masgent simplifies complex simulation tasks and boosts productivity for both researchers and students.
-
Basic Usage:
e.g., prepare POSCAR files and generate SQS structures -
AI Agent:
e.g., prepare POSCAR files and run EOS calculations simply by chatting
Most materials-simulation tools—pymatgen, ASE, VASPkit, etc.—require manual scripting, multi-step workflows, and deep HPC expertise to run full DFT or ML-based simulations. Masgent removes that barrier by providing a unified, AI-driven interface for structure generation, workflow preparation, fast simulations, and analysis.
Masgent offers:
- An AI-native simulation assistant that prepares VASP workflows, analyzes results, and answers technical questions through natural language.
- Turn-key VASP workflow templates (Convergence Test, EOS, Elastic, AIMD, NEB) with built-in analysis tools.
- Automatic generation of all VASP inputs — INCAR, KPOINTS, POTCAR, POSCAR, and HPC job scripts — with sensible defaults.
- One-command structure operations, including defect creation, supercells, slabs, interfaces, and SQS generation.
- Visualization of structures through interactive web-based viewers.
- Fast machine-learning-potential simulations using SevenNet, CHGNet, Orb-v3, and MatSim for rapid EOS, elasticity, and MD.
- Lightweight ML utilities for feature preparation, dimensionality reduction, data augmentation, hyperparameter tuning, and model training.
| Provider | Model | API Key Required | Notes |
|---|---|---|---|
| Masgent | Masgent AI | ❌ No | No API key needed, response may be slower on cold start |
| OpenAI | GPT-5 Nano | ✅ Yes | Requires OpenAI API key |
| Anthropic | Claude Sonnet 4.5 | ✅ Yes | Requires Anthropic API key |
| Gemini 2.5 Flash | ✅ Yes | Requires Google API key | |
| xAI | Grok 4.1 Fast | ✅ Yes | Requires Grok (xAI) API key |
| DeepSeek | DeepSeek Chat | ✅ Yes | Requires DeepSeek API key |
| Alibaba | Qwen Flash | ✅ Yes | Requires Alibaba Cloud API key |
- Density Functional Theory (DFT) Simulations
-
1.1 Structure Preparation & Manipulation
- 1.1.1 Generate POSCAR from chemical formula
- 1.1.2 Convert POSCAR coordinates (Direct <-> Cartesian)
- 1.1.3 Convert structure file formats (CIF, POSCAR, XYZ)
- 1.1.4 Generate structures with defects (Vacancies, Substitutions, Interstitials)
- 1.1.5 Generate supercells
- 1.1.6 Generate Special Quasirandom Structures (SQS)
- 1.1.7 Generate surface slabs
- 1.1.8 Generate interface structures
- 1.1.9 Visualize structures
-
1.2 VASP Input File Preparation
- 1.2.1 Prepare full VASP input files (INCAR, KPOINTS, POTCAR, POSCAR)
- 1.2.2 Generate INCAR templates
- MPMetalRelaxSet: suggested for metallic structure relaxation
- MPRelaxSet: suggested for structure relaxation
- MPStaticSet: suggested for static calculations
- MPNonSCFBandSet: suggested for non-self-consistent field calculations (Band structure)
- MPNonSCFDOSSet: suggested for non-self-consistent field calculations (Density of States)
- MPMDSet: suggested for molecular dynamics simulations
- 1.2.3 Generate KPOINTS with specified accuracy
- 1.2.4 Generate HPC job submission script
-
1.3 Standard VASP Workflow Preparation
- 1.3.1 Convergence test (ENCUT, KPOINTS)
- 1.3.2 Equation of State (EOS)
- 1.3.3 Elastic constants calculations
- 1.3.4 Ab-initio Molecular Dynamics (AIMD)
- 1.3.5 Nudged Elastic Band (NEB) calculations
-
1.4 Standard VASP Workflow Output Analysis
- 1.4.1 Convergence test analysis
- 1.4.2 Equation of State (EOS) analysis
- 1.4.3 Elastic constants analysis
- 1.4.4 Ab-initio Molecular Dynamics (AIMD) analysis
- 1.4.5 Nudged Elastic Band (NEB) analysis
- Fast Simulations Using Machine Learning Potentials (MLPs)
- Supported MLPs:
- 2.1 SevenNet
- 2.2 CHGNet
- 2.3 Orb-v3
- 2.4 MatSim
- Implemented Simulations for all MLPs:
- Single Point Energy Calculation
- Equation of State (EOS) Calculation
- Elastic Constants Calculation
- Molecular Dynamics Simulation (NVT)
- Simple Machine Learning for Materials Science
- 3.1 Data Preparation & Feature Analysis
- 3.1.1 Feature analysis and visualization
- 3.1.2 Dimensionality reduction (if too many features)
- 3.1.3 Data augmentation (if limited data)
- 3.2 Model Design & Hyperparameter Tuning
- 3.3 Model Training & Evaluation
- 3.4 Pre-trained Model Applications
- 3.4.1 Mechanical Properties Prediction in Sc-modified Al-Mg-Si Alloys
- 3.4.2 Phase Stability & Elastic Properties Prediction in Al-Co-Cr-Fe-Ni High-Entropy Alloys
- Requirements:
- Python >= 3.11, < 3.14
- Install Masgent:
pip install -U masgent
- Optional:
- Materials Project API key for MP structure access: materialsproject.org
- Setup POTCAR path for Pymatgen, see instructions: pymatgen.org
- After installation, simply run:
masgent
- You'll guided by an interactive menu and can invoke the AI agent anytime. Ask anything in AI chat, for example:
> Generate a POSCAR file for NaCl. > Prepare VASP input files for a graphene structure. > Add defects to a silicon crystal POSCAR. > ...
Found a bug? Have a feature request?
Please open an issue here: https://github.com/aguang5241/masgent/issues
If you use Masgent in your research, please cite the following reference:
@misc{liu2025masgentaiassistedmaterialssimulation,
title={Masgent: An AI-assisted Materials Simulation Agent},
author={Guanghen Liu and Songge Yang and Yu Zhong},
year={2025},
eprint={2512.23010},
archivePrefix={arXiv},
primaryClass={physics.comp-ph},
url={https://arxiv.org/abs/2512.23010},
}
Masgent builds on the open-source materials ecosystem, including ASE, Pymatgen, Icet, and modern Machine Learning Potentials. We thank the developers of these tools for making advanced materials simulation possible.

