R-LiViT is a comprehensive dataset designed to enhance roadside perception systems, focusing on vulnerable road users.
This repository allows you to reproduce the experiments and benchmarking from the paper:
R-LiViT: A LiDAR-Visual-Thermal Dataset for Enhanced Roadside Perception of Vulnerable Road Users
IEEE/CVF International Conference on Computer Vision (ICCV), 2025
https://doi.org/10.48550/arXiv.2503.17122
Additionally, the pipelines include dataloading tools and can be used for further experiments, see READMEs in the subfolders.
You can download the dataset via Zenodo: https://doi.org/10.5281/zenodo.16356714
There are three downloadable versions (direct download by clicking on the link):
To reproduce the LiDAR results refer to the lidar_object_detection_and_tracking/ folder and its README.md file.
LiDAR Object Detection Benchmark Results
| Method | AP75 | AP50 | AP75 | AP25 | AP50 | AP25 |
|---|---|---|---|---|---|---|
| (Car) | (Car) | (Pedestrian) | (Pedestrian) | (Cyclist) | (Cyclist) | |
| PointPillars | 46.73 | 58.38 | 23.07 | 30.64 | 30.11 | 37.58 |
| PointRCNN | 28.26 | 31.58 | 4.62 | 5.20 | 11.76 | 13.09 |
| PV-RCNN | 46.72 | 56.19 | 19.79 | 26.85 | 28.43 | 33.88 |
LiDAR Multi Object Tracking Benchmarking Results
| Method | sAMOTA ↑ | AMOTP ↑ | IDS ↓ | sAMOTA ↑ | AMOTP ↑ | IDS ↓ | sAMOTA ↑ | AMOTP ↑ | IDS ↓ |
|---|---|---|---|---|---|---|---|---|---|
| (Car) | (Car) | (Car) | (Pedestrian) | (Pedestrian) | (Pedestrian) | (Cyclist) | (Cyclist) | (Cyclist) | |
| AB3DMOT | 78.45 | 58.42 | 21 | 30.26 | 21.46 | 3 | 33.30 | 23.97 | 0 |
| SimpleTrack | 64.40 | 48.96 | 1 | 18.80 | 15.20 | 0 | 25.15 | 18.18 | 0 |
| Mahalanobis | 61.53 | 47.37 | 2 | 19.99 | 18.27 | 2 | 22.01 | 16.44 | 2 |
To reproduce the RGB-T results refer to the rgbt_object_detection/ folder and its README.md file.
RGB-T Object Detection Benchmarking Results
| Model | Modality | AP | AP50 | AP75 | APS | APM | APL | ARper100 | AP | AP50 | AP75 | APS | APM | APL | ARper100 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (Day) | (Day) | (Day) | (Day) | (Day) | (Day) | (Day) | (Night) | (Night) | (Night) | (Night) | (Night) | (Night) | (Night) | ||
| Faster R-CNN | RGB | 35.06 | 61.32 | 36.51 | 18.73 | 43.31 | 58.77 | 43.44 | 24.98 | 48.76 | 23.73 | 19.75 | 32.62 | 56.09 | 38.30 |
| Thermal | 19.05 | 40.60 | 15.24 | 9.23 | 23.26 | 44.44 | 27.91 | 15.21 | 39.18 | 8.59 | 14.69 | 17.10 | 32.59 | 25.55 | |
| RGB+Thermal | 31.59 | 53.95 | 33.19 | 16.39 | 41.18 | 58.64 | 46.74 | 20.47 | 41.93 | 17.24 | 17.90 | 27.82 | 45.60 | 44.67 | |
| YOLOv8 | RGB | 44.87 | 63.02 | 49.85 | 18.75 | 48.72 | 73.74 | 46.39 | 32.27 | 49.85 | 34.80 | 18.49 | 35.05 | 51.54 | 37.76 |
| Thermal | 31.90 | 50.11 | 34.18 | 11.72 | 26.43 | 56.62 | 33.39 | 26.55 | 49.04 | 25.90 | 15.66 | 29.94 | 30.45 | 31.83 | |
| RGB+Thermal | 43.09 | 59.93 | 48.58 | 18.39 | 45.73 | 72.42 | 50.42 | 33.95 | 53.26 | 37.40 | 19.67 | 37.34 | 53.53 | 45.34 | |
| RT-DETR | RGB | 37.50 | 59.67 | 40.57 | 18.74 | 37.59 | 57.79 | 40.68 | 32.67 | 54.60 | 35.27 | 20.16 | 27.91 | 45.75 | 34.15 |
| Thermal | 29.08 | 50.70 | 30.12 | 13.47 | 24.36 | 47.45 | 31.84 | 27.03 | 50.48 | 25.42 | 18.88 | 27.48 | 26.53 | 28.74 | |
| RGB+Thermal | 37.12 | 58.78 | 40.84 | 19.10 | 36.00 | 58.21 | 44.93 | 34.46 | 58.78 | 36.57 | 22.25 | 30.81 | 45.24 | 41.14 |
@InProceedings{rlivit_dataset,
title = {R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception},
author = {Jonas Mirlach and Lei Wan and Andreas Wiedholz and Hannan Ejaz Keen and Andreas Eich},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2025},
}