Skip to content

XITASO/r-livit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

R-LiViT: A LiDAR-Visual-Thermal Dataset for Enhanced Roadside Perception of Vulnerable Road Users

Paper arXiv Dataset

R-LiViT is a comprehensive dataset designed to enhance roadside perception systems, focusing on vulnerable road users.

This repository allows you to reproduce the experiments and benchmarking from the paper:

R-LiViT: A LiDAR-Visual-Thermal Dataset for Enhanced Roadside Perception of Vulnerable Road Users
IEEE/CVF International Conference on Computer Vision (ICCV), 2025
https://doi.org/10.48550/arXiv.2503.17122

Additionally, the pipelines include dataloading tools and can be used for further experiments, see READMEs in the subfolders.

📦 Data Download

You can download the dataset via Zenodo: https://doi.org/10.5281/zenodo.16356714

There are three downloadable versions (direct download by clicking on the link):

📊 Evaluation Results

LiDAR

To reproduce the LiDAR results refer to the lidar_object_detection_and_tracking/ folder and its README.md file.

LiDAR Object Detection Benchmark Results
Method AP75 AP50 AP75 AP25 AP50 AP25
(Car) (Car) (Pedestrian) (Pedestrian) (Cyclist) (Cyclist)
PointPillars 46.73 58.38 23.07 30.64 30.11 37.58
PointRCNN 28.26 31.58 4.62 5.20 11.76 13.09
PV-RCNN 46.72 56.19 19.79 26.85 28.43 33.88
LiDAR Multi Object Tracking Benchmarking Results
Method sAMOTA ↑ AMOTP ↑ IDS ↓ sAMOTA ↑ AMOTP ↑ IDS ↓ sAMOTA ↑ AMOTP ↑ IDS ↓
(Car) (Car) (Car) (Pedestrian) (Pedestrian) (Pedestrian) (Cyclist) (Cyclist) (Cyclist)
AB3DMOT 78.45 58.42 21 30.26 21.46 3 33.30 23.97 0
SimpleTrack 64.40 48.96 1 18.80 15.20 0 25.15 18.18 0
Mahalanobis 61.53 47.37 2 19.99 18.27 2 22.01 16.44 2

RGB-T

To reproduce the RGB-T results refer to the rgbt_object_detection/ folder and its README.md file.

RGB-T Object Detection Benchmarking Results
Model Modality AP AP50 AP75 APS APM APL ARper100 AP AP50 AP75 APS APM APL ARper100
(Day) (Day) (Day) (Day) (Day) (Day) (Day) (Night) (Night) (Night) (Night) (Night) (Night) (Night)
Faster R-CNN RGB 35.06 61.32 36.51 18.73 43.31 58.77 43.44 24.98 48.76 23.73 19.75 32.62 56.09 38.30
Thermal 19.05 40.60 15.24 9.23 23.26 44.44 27.91 15.21 39.18 8.59 14.69 17.10 32.59 25.55
RGB+Thermal 31.59 53.95 33.19 16.39 41.18 58.64 46.74 20.47 41.93 17.24 17.90 27.82 45.60 44.67
YOLOv8 RGB 44.87 63.02 49.85 18.75 48.72 73.74 46.39 32.27 49.85 34.80 18.49 35.05 51.54 37.76
Thermal 31.90 50.11 34.18 11.72 26.43 56.62 33.39 26.55 49.04 25.90 15.66 29.94 30.45 31.83
RGB+Thermal 43.09 59.93 48.58 18.39 45.73 72.42 50.42 33.95 53.26 37.40 19.67 37.34 53.53 45.34
RT-DETR RGB 37.50 59.67 40.57 18.74 37.59 57.79 40.68 32.67 54.60 35.27 20.16 27.91 45.75 34.15
Thermal 29.08 50.70 30.12 13.47 24.36 47.45 31.84 27.03 50.48 25.42 18.88 27.48 26.53 28.74
RGB+Thermal 37.12 58.78 40.84 19.10 36.00 58.21 44.93 34.46 58.78 36.57 22.25 30.81 45.24 41.14

📑 Citation

@InProceedings{rlivit_dataset,
    title     = {R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception}, 
    author    = {Jonas Mirlach and Lei Wan and Andreas Wiedholz and Hannan Ejaz Keen and Andreas Eich},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2025},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published