Starred repositories
Hikyuu Quant Framework 基于C++/Python的极速开源量化交易研究框架,同时可基于策略部件进行资产重用,快速累积策略资产。
tukuaiai / vibe-coding-cn
Forked from EnzeD/vibe-codingVibe Coding 指南 - 涵盖 Prompt 提示词、Skill 技能库、Workflow 工作流的 AI 编程工作站
Your own personal AI assistant. Any OS. Any Platform. The lobster way. 🦞
An open-source alternative to Claude Cowork, powered by opencode
基于多智能体LLM的中文金融交易框架 - TradingAgents中文增强版
Lean Algorithmic Trading Engine by QuantConnect (Python, C#)
An agentic skills framework & software development methodology that works.
LLM驱动的 A/H/美股智能分析器,多数据源行情 + 实时新闻 + Gemini 决策仪表盘 + 多渠道推送,零成本,纯白嫖,定时运行
AI-driven, local-first quantitative trading platform for research, backtesting and live execution. Python-native, privacy-first, open source.
feixiao / llm-benchmark
Forked from lework/llm-benchmarkLLM 并发性能测试工具,支持自动化压力测试和性能报告生成。
This is a database of 300.000+ symbols containing Equities, ETFs, Funds, Indices, Currencies, Cryptocurrencies and Money Markets.
Trading Pattern Scanner Identifies complex patterns like head and shoulder, wedge and many more.
Project-based learning tutorials to help you build AI-native applications from scratch.
Vibe coding from 0 to 1 |把想法做成真正能上线的产品|首个交互式教程|零基础也能学会的 AI 编程实战
Streamlined interface for generating images with AI in Krita. Inpaint and outpaint with optional text prompt, no tweaking required.
红墨 - 基于🍌Nano Banana Pro🍌 的一站式小红书图文生成器 《一句话一张图片生成小红书图文》 Red Ink - A one-stop Xiaohongshu image-and-text generator based on the 🍌Nano Banana Pro🍌, "One Sentence, One Image: Generate Xiaohongshu Text …
2026年最新Claude充值订阅攻略,包括Claude注册、Claude账号购买、Claude拼车合租、Claude Pro代充、Claude Code国内使用教程!
Fin-Agent 是一个基于 DeepSeek 等大模型和 Tushare 金融数据的智能金融分析助手。它能够通过自然语言交互,帮助用户查询股票行情、分析财务数据、获取市场指标、选股筛选以及策略回测,并提供投资参考建议。
Model Context Protocol (MCP) server for go-zero framework - Generate APIs, RPC services, and models with AI assistance.
A Go implementation of the Model Context Protocol (MCP), enabling seamless integration between LLM applications and external data sources and tools.
The LLM's practical guide: From the fundamentals to deploying advanced LLM and RAG apps to AWS using LLMOps best practices
