This is Pytorch code for edge connection with GAN,in which a autoencoder structure is utilized for generator
- data : Images data
- DefectDataset : Images of groundtruth and augmented dataset
- gt
- noise
- background : Edges of clutter
- GAN_Image : Images during the training procedure
- Model
- DIS
- GAN
- Template : A set of well connected contour images
- bin_contour
- Test_Image : The output of model
- input
- output
- src
- AAE.py
- AAEWithClassifier.py
- datasetGenerate.py
- testAAE.py
- testAAEWithClassifier.py
- region.py
- README.md
- script : Matlab scripts
- roi : Roi cropped by mask
pytorch
PIL
cv2
## Go to src folder
cd src/
## Generate dataset
python3 datasetGenerate.py
## Train AEGAN
python3 AAE.py
## Test autoencoder
python3 testAAE.py
Using Matlab opening guidence_template.m
19.7.26: Update AAE.py, region.py, testAAE.py; The problem that the holes inside mask expanded is resolved.
19.8.02: Update AAEWithClassifier.py, testAAEWithClassifier.py; Add illumination normalization procedure for origin images, then choose SQI technique results as sources.